Answer:
- 1.9f - 18
Step-by-step explanation:

We have the following limit:
(8n2 + 5n + 2) / (3 + 2n)
Evaluating for n = inf we have:
(8 (inf) 2 + 5 (inf) + 2) / (3 + 2 (inf))
(inf) / (inf)
We observe that we have an indetermination, which we must resolve.
Applying L'hopital we have:
(8n2 + 5n + 2) '/ (3 + 2n)'
(16n + 5) / (2)
Evaluating again for n = inf:
(16 (inf) + 5) / (2) = inf
Therefore, the limit tends to infinity.
Answer:
d.limit does not exist
5 odd numbers and 5 even numbers
since they can be repeated
5*5*5=first 3 digits
5*5*5=last 3 digits
in all
5*5*5*5*5*5=15625 ways
For some reason its not letting me send you it so like here is a pic
F(x) = 2x² - 8x - 10.
This is a parabola open upward (since a>0) with an axis of symmetry = -b/2a:
a) axis of symmetry: x = -(-8)/(2*2) = 8/4 = 2. Then x = 2, which is the x component of the vertex
b) for x = 2, f(x) = f(2) = - 18 (component of y of the vertex)
c) VERTEX(2, - 18)
d) DISCRIMINENT: b² - 4.a.c = 64 - 4*2*(-10) = 144