1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vampirchik [111]
3 years ago
12

(CESGRANRIO) Determine o parâmetro m na equação x²+mx+m²-m-12=0, de modo que ela tenha uma raíz nula e outra positiva.

Mathematics
1 answer:
slavikrds [6]3 years ago
4 0
Vamos lá. 

<span>Pede-se para determinar o parâmetro "m" da equação abaixo, sabendo-se que uma raiz é nula e a outra é positiva: </span>

<span>x² + mx + m² - m - 12 = 0 </span>

<span>Veja que se uma raiz é nula (é igual a zero), então vamos substituir o "x" por "0", na equação acima: </span>

<span>0² + m*0 + m² - m - 12 = 0 </span>
<span>0 + 0 + m² - m - 12 = 0 </span>
<span>m² - m - 12 = 0 ------resolvendo essa equação do 2º grau você encontrará as seguintes raízes: </span>

<span>m' = -3 </span>
<span>m'' = 4 </span>

<span>Dessa forma, vamos substituir "m" por (-3) e por 4 e ver se a equação terá uma raiz nula e outra positiva. Vamos ver? </span>

<span>Substituindo "m" por "-3", ficamos com: </span>

<span>x² - 3x + (-3)² - (-3) - 12 = 0 </span>
<span>x² - 3x + 9 + 3 - 12 = 0 </span>
<span>x² - 3x +12 - 12 = 0 </span>
<span>x² - 3x = 0 <------Veja que as raízes dessa equação são: x' = 0 e x'' = 3 </span>
<span>Veja que para m = -3, a equação se verifica, pois temos uma raiz igual a "0" e a outra positiva (igual a 3). </span>

<span>Agora vamos substituir "m" por 4 na equação original: </span>

<span>x² + 4x + 4² - 4 - 12 = 0 </span>
<span>x² + 4x + 16 - 16 = 0 </span>
<span>x² + 4x = 0 <----- Veja que as raízes dessa equação são: x' = 0 e x'' = -4. </span>
<span>Observe que, para m = 4, a equação NÃO se verifica, pois temos uma raiz igual a "0" e a outra negativa (igual a -4). E no enunciado é informado que uma raiz deverá ser nula e a outra positiva. Como deu uma nula e a outra negativa, então m = 4 não convém. </span>

<span>Logo, o valor de "m" deverá ser: </span>

<span>m = -3 <----Pronto. Essa é a resposta. </span>
You might be interested in
Each child is riding on a pony with a saddle
castortr0y [4]
But what is the question
7 0
3 years ago
Which equation represents the line shown in the graph below?
likoan [24]

The answer is y=2x+5


To get it use point slope by taking two points and solving .


Slope formula


M= y2-y1/x2-x1


With two points


(0,5)(-5,-5)


M= -5-5/-5-0

M= -10/-5

M=2


2 is slope


Now get one of the points

(0,5) And slope to create equation y=mx+b . Now find b


5=2(0)+b

5=b


So now you can put it all together


Y= 2x+5

3 0
3 years ago
GIVING BRAINLIEST PLEASE ANSWER
klasskru [66]

Answer:

Step-by-step explanation:

aww im sorry i dont no i wish i knew but you dont need to give me anything im stupid

7 0
3 years ago
Read 2 more answers
Solve the proportion
mario62 [17]

Answer:

\boxed{\sf x = 5}

Step-by-step explanation:

\sf Solve  \: for  \: x  \: over  \: the  \: real \:  numbers:  \\ \sf \implies  \frac{2}{x - 3}   =  \frac{5}{x}  \\  \\  \sf Take  \: the \:  reciprocal  \: of  \: both \:  sides:  \\ \sf \implies  \frac{x - 3}{2}  =  \frac{x}{5}  \\  \\  \sf Expand  \: out \:  terms \:  of \:  the \:  left  \: hand \:  side:  \\  \\ \sf \implies \frac{x}{2}  -  \frac{3}{2}  =  \frac{x}{5}  \\  \\  \sf Subtract \:  \frac{x}{5}   -  \frac{3}{2}  \: from  \: both  \: sides: \\  \sf \implies \frac{x}{2}  -  \frac{3}{2} - ( \frac{x}{5}   -  \frac{3}{2} ) =  \frac{x}{5} - ( \frac{x}{5}  -  \frac{3}{2} ) \\  \\  \sf \implies \frac{x}{2}  -  \frac{3}{2} -  \frac{x}{5}    +   \frac{3}{2} =  \frac{x}{5} -  \frac{x}{5}  +  \frac{3}{2}  \\  \\  \sf \frac{x}{5}  -  \frac{x}{5}  = 0 :  \\  \sf \implies \frac{x}{2}  -  \frac{x}{5}  -  \frac{3}{2}  +  \frac{3}{2}  =  \frac{3}{2}  \\  \\  \sf  \frac{3}{2}   -   \frac{3}{2}   = 0:  \\  \sf \implies \frac{x}{2}  -  \frac{x}{5}  =  \frac{3}{2}   \\  \\ \sf \frac{x}{2}  -  \frac{x}{5} =  \frac{5x - 2x}{10}  =  \frac{3x}{10} :  \\   \sf \implies \frac{3x}{10}  =  \frac{3}{2}   \\  \\ \sf Multiply \:  both  \: sides \:  by \:  \frac{10}{3}  : \\   \sf \implies \frac{3x}{10}  \times  \frac{10}{3}  =  \frac{3}{2 }  \times  \frac{10}{3}   \\  \\ \sf \frac{3x}{10}  \times  \frac{10}{3}  =   \cancel{\frac{3}{10} } \times( x) \times  \cancel{ \frac{10}{3} } = x :  \\  \sf \implies x =  \frac{3}{2}  \times  \frac{10}{3} \\  \\   \sf  \frac{3}{2}  \times  \frac{10}{3}  = \cancel{ \frac{3}{2} }  \times \cancel{ \frac{3}{2} }  \times 5 :   \\ \sf \implies x = 5

8 0
3 years ago
What is the area of this figure? I will give brainliest! :)
jenyasd209 [6]

Answer:

Step-by-step explanation:

Area = (17×35) - (6×15) = 595 - 90 = 505 ft²

3 0
3 years ago
Read 2 more answers
Other questions:
  • 9. Let f(x) = 4x + 7 and g(x) = 3x - 5. Find.(g×f)(-4) Pick one
    6·1 answer
  • What are the sine, cosine, and tangent of 2pi/3 radians?
    11·2 answers
  • Lines a and b are parallel. Line c is a transversal. Find the measures of all angles formed by a,b, and c, if:
    12·1 answer
  • The product of two consecutive positive even integers is 440. what are the integers
    14·1 answer
  • Can someone please help me with this one question please??
    10·1 answer
  • Which table represents a function?
    9·1 answer
  • Write in least to greatest order 0.56, 4.56, 0.65
    13·2 answers
  • Perimeter question math
    12·2 answers
  • A plane left an airport and flew 3 miles north, 5 miles west, 2 miles north, 3 miles west, and then flew directly back to the ai
    13·1 answer
  • Are these lines Parallel? <br><br>Super easy, just one pair of lines.​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!