Newton's second law states that the product between the mass and the acceleration of an object is equal to the force applied:

from which we find an expression for the acceleration:

(1)
Both objects are moving by uniformly accelerated motion (because the force applied is constant), so we can also using the following relationship

(2)
where

is the final speed of the object

is the initial speed
S is the distance covered
By substituting (1) into (2), and by removing

(since the final velocity of the two objects is zero), we find


where we can ignore the negative sign (because the force F will bring another negative sign).
For the first object, we have
![S= \frac{(2.0 m/s)^2 (4.0 kg)}{2F} = \frac{8}{F} [m]](https://tex.z-dn.net/?f=S%3D%20%5Cfrac%7B%282.0%20m%2Fs%29%5E2%20%284.0%20kg%29%7D%7B2F%7D%20%3D%20%20%5Cfrac%7B8%7D%7BF%7D%20%5Bm%5D%20)
And for the second object we have
![S= \frac{(4.0 m/s)^2 (1.0 kg)}{2F} = \frac{8}{F} [m]](https://tex.z-dn.net/?f=S%3D%20%5Cfrac%7B%284.0%20m%2Fs%29%5E2%20%281.0%20kg%29%7D%7B2F%7D%20%3D%20%5Cfrac%7B8%7D%7BF%7D%20%5Bm%5D%20)
And since the braking force applied to the two objects is the same, the two objects cover the same distance.
Given that the space station is free of gravitational force, it is required that it spins an certain speed to acquire centripetal acceleration.
In this case, you want that the centripetal acceleration, Ac, equals g (gravitational acceleration on the earth), becasue this will cause a centripetal force equal to the weight on earth.
The formula for centripetal acceleration is Ac = [angular velocity]^2*R
where R = [1/2]50.0m = 25.0 m
Ac = 9.81 m/s^2
=> [angular velocity]^2 = Ac/R = 9.81m/s^2v/ 25.0m = 0.3924 (rad/s)^2
[angular velocity] = √(0.3924) rad/s = 0.63 rad/s
Answer: 0.63 rad/s
So picture below to see answer and explanation.
Answer:

Explanation:
The figure of the problem is included below as attachment. The equations of equilibrium are presented below:



The system of equations are:


![N_{1} \cdot [(0.75\,m)-0.2\cdot (0.35\,m)] - N_{2}\cdot (1.25\,m) = 0](https://tex.z-dn.net/?f=N_%7B1%7D%20%5Ccdot%20%5B%280.75%5C%2Cm%29-0.2%5Ccdot%20%280.35%5C%2Cm%29%5D%20-%20N_%7B2%7D%5Ccdot%20%281.25%5C%2Cm%29%20%3D%200)
The solution of the system is:
,
and 
The shortest time to reach a speed of 80 km/h is:


Answer:
Explanation:
tensile strength is stress that is needed to break the wire made of the material .
Here force required to break the sheet of material = 233 N
cross sectional area of the foil = breadth x thickness
= 5 x 10⁻² x 15 x 10⁻⁶ m²
= 75 x 10⁻⁸ m²
breaking stress = force / cross sectional area
= 233 / 75 x 10⁻⁸
= 3.1 x 10⁸ Pa .
Tensile strength = 3.1 x 10⁸ Pa .