Answer:
1. True WA > WB > WC
Explanation:
In this exercise they give work for several different configurations and ask that we show the relationship between them, the best way to do this is to calculate each work separately.
A) Work is the product of force by distance and the cosine of the angle between them
WA = W h cos 0
WA = mg h
B) On a ramp without rubbing
Sin30 = h / L
L = h / sin 30
WB = F d cos θ
WB = F L cos 30
WB = mf (h / sin30) cos 30
WB = mg h ctan 30
C) Ramp with rubbing
W sin 30 - fr = ma
N- Wcos30 = 0
W sin 30 - μ W cos 30 = ma
F = W (sin30 - μ cos30)
WC = mg (sin30 - μ cos30) h / sin30
Wc = mg (1 - μ ctan30) h
When we review the affirmation it is the work where there is rubbing is the smallest and the work where it comes in free fall at the maximum
Let's review the claims
1. True The work of gravity is the greatest and the work where there is friction is the least
2 False. The job where there is friction is the least
3 False work with rubbing is the least
4 False work with rubbing is the least
The time must be measured with respect to gravity. As it falls, it has free fall that is the force acting on it will be the gravity.With the distance in account, d = 1/2 gt²
t = √(2d/g)
Answer:
Gallium
Explanation:
Gallium is one such element used as a do/pant in a p-type semiconductor.
A do/pant is an impurity added to a semi-conductor used to alter its properties. Semi-conductors have a wide range of applications. They will conduct heat and electricity only under certain conditions. This property is highly desirable and find a wide application in electronics.
For p-type conductors, they are best do/ped with elements with 3 valence electrons. These are group 3 elements. From the choices, only gallium belongs to this group.
Other elements given are good do/pants for n-type semiconductors. They have 5 valence electrons.
If it takes

seconds to reach the car, then the distance

is

.
The bear's distance from the tourist's starting point is

For maximum

, we set the equations equal to each other:



so the distance is
As per FBD while its accelerating upwards
we can say that

here normal force is given as


now mass is given as


now we will have


Now while accelerating downwards we can say by FBD

again plug in all values

