To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that



Therefore,


Re-arrange to find x,

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.
The sea level would rise because the snow and glaciers are water
Answer:
Acceleration, 
Explanation:
It is given that,
Initial velocity of the car, u = 10 m/s (in right)
Final velocity of the car, v = -5 m/s (in left)
Time taken, t = 10 s
Let a is the acceleration of the car. It can be calculated using the equation of kinematics. The equation is as :



So, the acceleration of the car is
. Hence, this is the required solution.
Answer:
It can only display one record at a time
Explanation:
Form ;
1. This is a document with spaces (also called placeholders or fields ) in which a series of documents with similar content can be written or selected.
2.This is the most popular method of data entry
3.It may contain images in the background.
4.This can be sorted data regardless of its source of information.
Only option C is wrong.
Therefore the answer C is correct.
The answer is: [C]: "elasticity" .
________________________________________