Answer:
Step-by-step explanation:
If
τ
1
and
τ
2
are two typologies on non-empty set
X
, then ………………. is topological space.
Answer:
C=6p
Step-by-step explanation:
The cost (c) will be by itself since that is the answer you are looking for. 6p is grouped together because for every pound you pay $6. For example if you had 2 pounds of chocolate. You would multiple $6 by 2 and your cost would equal $12
Camel back Mountain = 15,168 inches (1,264 feet)
- 1 Penny = 0.061 (.0610) Inches
- 10 Penny = 0.61 (.610) Inches
- 100 Penny = 6.1 (6.10) Inches
- 1,000 Penny = 61 (61.0) Inches
- 10,000 Penny = 610 (610.0) Inches
<u>-SOLVING-</u>
10,000 Penny = 610 inches PLUS
1,000 Penny = 61 inches AND 61 inches x 5 = 305 (5,000 Penny)
100 Penny = 6.1 inches PLUS
10 Penny = 0.61 inches AND 0.61 inches x 6 = 3.66 (60 Penny)
1 Penny = 0.061 inches AND 0.061 inches x 8 = 0.488 (8 Penny)
-<u>FINAL ANSWER-</u>
610 + 305 + 6.1 + 3.66 + 0.488 = 925.248 Penny it would take.
The first digit in will be in the hundreds place.
let's notice something, we have a circle with a radius of 12 and one 90° sector is cut off, so only three 90° sectors of the circle are left shaded, so namely the cone will be using 3/4 of that circle.
think of it as, this shaded area is some piece of paper, and you need to pull it upwards and have the cutoff edges meet, and when that happens, you'll end up with a cone-shaped paper cup, and pour in some punch.
now, once we have pulled up the center of the circle to make our paper cup, there will be a circular base, its diameter not going to be 24, it'll be less, but whatever that base is, we know that is going to have the same circumference as those in the shaded area. Well, what is the circumference of that shaded area?
![\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=12 \end{cases}\implies C=2\pi 12\implies C=24\pi \implies \stackrel{\textit{three quarters of it}}{24\pi \cdot \cfrac{3}{4}} \\\\\\ 6\pi \cdot 3\implies 18\pi](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D12%20%5Cend%7Bcases%7D%5Cimplies%20C%3D2%5Cpi%2012%5Cimplies%20C%3D24%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bthree%20quarters%20of%20it%7D%7D%7B24%5Cpi%20%5Ccdot%20%5Ccfrac%7B3%7D%7B4%7D%7D%20%5C%5C%5C%5C%5C%5C%206%5Cpi%20%5Ccdot%203%5Cimplies%2018%5Cpi)
well then, the circumference of that circle at the bottom will be 18π, so, what is the diameter of a circle with a circumferenc of 18π?
![\bf \textit{circumference of a circle}\\\\ C=2\pi r~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ C=18\pi \end{cases}\implies 18\pi =2\pi r\implies \cfrac{18\pi }{2\pi }=r\implies 9=r \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{\textit{diameter is twice the radius}}{d=18}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bcircumference%20of%20a%20circle%7D%5C%5C%5C%5C%20C%3D2%5Cpi%20r~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20C%3D18%5Cpi%20%5Cend%7Bcases%7D%5Cimplies%2018%5Cpi%20%3D2%5Cpi%20r%5Cimplies%20%5Ccfrac%7B18%5Cpi%20%7D%7B2%5Cpi%20%7D%3Dr%5Cimplies%209%3Dr%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B%5Ctextit%7Bdiameter%20is%20twice%20the%20radius%7D%7D%7Bd%3D18%7D~%5Chfill)