Answer:
The answer is "2793 miles"
Step-by-step explanation:
In this firstly we convert degrees to radians, which can be defined as follows:


Now calculating the distance:


Answer:
Step-by-step explanation:
These items may be used by Louisiana educators for educational purposes. Grade 7 Answer Key. ITEM 14. Use the table to answer the question.
{-2x-5y=13
<u>{2x-5y=17 </u>(+)
<em /> -2x+2x-5y-5y=13+17
-10y=30 /:(-10)
y=-3
2x-5y=17
2x-5*(-3)=17
2x+15=17
2x=2
x=1
<em>Solution: (1; -3)</em>
Answer:
A sinusoidal model would be used
The kind of function that have consistency in the periodic rate of change is the Average rate of changes
Step-by-step explanation:
The type of model that would be used is sinusoidal model and this is because there is periodic change in the values given ( i.e the rate of changes given )
For percentage rate of changes :
starting from 0.9% there is an increase to 1.3% then a decrease to 1.1% and a further decrease to 1% before an increase to 1.3% and another decrease to 1%
For Average rate of changes:
starting from 2.9 there is a decrease to 2.4, then an increase to 3.7 and another decrease to 3.1 followed by an increase to 3.6 and a decrease back to 3.2
This relation ( sinusoidal model ) is best suited for a linear model because there is a periodic rate of change in the functions
The kind of function that have consistency in the period rate of change is the Average rate of changes
Answer: A. A=(1000-2w)*w B. 250 feet
C. 125 000 square feet
Step-by-step explanation:
The area of rectangular is A=l*w (1)
From another hand the length of the fence is 2*w+l=1000 (2)
L is not multiplied by 2, because the opposite side of the l is the barn,- we don't need in fence on that side.
Express l from (2):
l=1000-2w
Substitude l in (1) by 1000-2w
A=(1000-2w)*w (3) ( Part A. is done !)
Part B.
To find the width w (Wmax) that corresponds to max of area A we have to dind the roots of equation (1000-2w)w=0 ( we get it from (3))
w1=0 1000-2*w2=0
w2=500
Wmax= (w1+w2)/2=(0+500)/2=250 feet
The width that maximize area A is Wmax=250 feet
Part C. Using (3) and the value of Wmax=250 we can write the following:
A(Wmax)=250*(1000-2*250)=250*500=125 000 square feets