Answer:
Zinc
Explanation:
The specific heat capacity can be described as the amount of heat required to raise the temperature of a substance by one degrees Celsius. It is represented by C or S. The greater the carrying capacity of a substance, the more will be the heat required for that substance.
As we can see in the information given in the question, the specific heat capacity of zinc is the lowest as compared to steel, water and aluminium. Hence, zinc is the correct option.
<span>There are divergent boundaries where the plates are moving away from each other, causing magma to rise up. The boiling lava is almost immediately cooled and forms new sea floor crust.</span>
it only happensonce every 7 years
<h3>
Answer:</h3>
1.827 × 10²⁴ molecules H₂S
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Compounds</u>
- Writing Compounds
- Acids/Bases
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
103.4 g H₂S (Sulfuric Acid)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of H - 1.01 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of H₂S - 2(1.01) + 32.07 = 34.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 4 sig figs.</em>
1.82656 × 10²⁴ molecules H₂S ≈ 1.827 × 10²⁴ molecules H₂S