Scientists use the physical and chemical properties to help them identify and classify matter. These physical and chemical properties are in a macro-perspective, in which these matter contains compounds, elements and atoms. Hence, matter can be classified in various ways, <span><span>
1. </span>Atomic number either atomic mass each element has</span>
<span><span>2. </span>By substance of that matter either pure substance or mixed substance</span> <span>
3. If they cannot reduce a certain substance into a much smaller quantified atomic structure then they they’ll use (2) to identify and classify it.</span>
Answer:
The correct answer is: <em>They each partially describe the bonding in a molecule.</em>
Explanation:
Some chemical molecules cannot be described completely by using only one Lewis structure. In these cases, we can describe the molecule by drawing 2 or more Lewis structures, and the structures are called <u>resonance structures</u>. The overall molecular structure is explained by all the resonance structures together. So, they each describe the bonding in the molecule only partially.
From Grahams Law the rates of effusion of two gases are inversely proportional to the square roots of their molar masses at the same temperature and pressure.
Therefore; R1/R2 = √mm2/√mm1
The molecular mass of Carbon dioxide is 44 g
Hence; 1.8 = √(44/x
3.24 = 44/x
x = 44/3.24
= 13.58
Therefore, the molar mass of the other gas is 13.58 g/mol
Answer: Option (c) is the correct answer.
Explanation:
Photosynthesis is a process in which sunlight, carbon dioxide, and water is used by the plants to make their on food.
Plants absorb energy in the form of heat from the sunlight and thus produce glucose and oxygen from carbon dioxide and water. This absorbed energy is then used to start various chemical and biochemical reactions in the plants.
Hence, photosynthesis is an endothermic reaction.
Thus, we can conclude that a large amount of energy is required to activate the reaction.
The octet rule states that atoms tend to form compounds in ways that give them eight valence electrons and thus the electron configuration of a noble gas