1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
3 years ago
11

I need help please and thank you.

Mathematics
1 answer:
Zinaida [17]3 years ago
7 0

Answer:

0

Step-by-step explanation:

The formula gives you a relation between S and n. For every n, you can perform the calculation and obtain an S.

So, for n=0 we get 0/2 (0+1) which equals 0. So (0,0) is an (n,S) pair.

You might be interested in
6. Suppose that a fair coin is tossed 2 times, and the result of each toss (H or T) is recorded.
nekit [7.7K]

Answer:

a) S= {HH, HT, TH, TT}

b) P(X=0) = (2C0) (0.5)^0 (1-0.5)^{2-0}= 0.25

P(X=1) = (2C1) (0.5)^1 (1-0.5)^{2-1}= 0.5

P(X=2) = (2C2) (0.5)^2 (1-0.5)^{2-2}= 0.25

And we have the following table:

X     |     0   |     1   |      2

P(X) |  0.25 |  0.5 |  0.25

Step-by-step explanation:

Let's define first some notation

H= represent a head for the coin tossed

T= represent tails for the coin tossed

We are going to toss a coin 2 times so then the size of the sample size is 2^2 = 4

a. What is the sample space for this chance experiment?

The sampling space on this case is given by:

S= {HH, HT, TH, TT}

b. For this chance experiment, give the probability distribution for the random variable of the total number of heads observed.

The possible values for the number of heads are X=0,1,2. If we assume a fair coin then the probability of obtain heads is the same probability of obtain tails and we can find the distribution like this:

P(X=0) = (2C0) (0.5)^0 (1-0.5)^{2-0}= 0.25

P(X=1) = (2C1) (0.5)^1 (1-0.5)^{2-1}= 0.5

P(X=2) = (2C2) (0.5)^2 (1-0.5)^{2-2}= 0.25

And we have the following table:

X     |     0   |     1   |      2

P(X) |  0.25 |  0.5 |  0.25

5 0
3 years ago
A school system is reducing the amount of dumpster loads of trash removed each week. In week 5, there were 40 dumpster loads of
iragen [17]
Plugging in (5 weeks, 40 loads) and (10 weeks, 30 loads) into each choice indicates that f(x) = -2x + 50 is the only correct answer.
4 0
3 years ago
Read 2 more answers
Which is the better buy? 3 yd of ribbon for $1.95 1 yd of ribbon for $.49
Stella [2.4K]
Its better to buy 3, 1 yd's of ribbon for .49 each because $.49 x 3 = $1.47 
3 0
3 years ago
Read 2 more answers
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
A rain gutter along the edge of a roof has the shape of a rectangular prism. It is 11 inches ​high, 2 inches ​wide, and 11 feet
Rus_ich [418]

Answer:

hi love u

Step-by-step explanation:

wanna talk its bruce

6 0
3 years ago
Other questions:
  • You open a savings account with a $50.00 deposit. You make a deposit of $20.00 and two more of $35.00 each and 2 withdrawals of
    10·2 answers
  • Consider the expression (x 6) – 3x
    7·1 answer
  • What is the domain of the function on the graph?
    11·2 answers
  • Simplify.48 ÷ ((2 6) · 2) - 1
    7·1 answer
  • Is the number /22,500 rational or irrational?<br> Explain.
    6·1 answer
  • Write a mix number for p so that 3 1/4 * p is more than 3 1/4
    10·2 answers
  • PLEASE HELP ASAP WILL MARK BRAINLIEST
    7·2 answers
  • 120 de metri plus 125 de metri​
    13·1 answer
  • 15 points also please don’t say random things just to get points. I really don’t understand this lesson so a detailed explanatio
    14·1 answer
  • When asked to factor the trinomial 6x^2 - 18 + 12, a student gives the answer (x - 2)(x - 1). What is the one thing wrong with t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!