Using probability concepts, it is found that:
a)
probability of drawing a card below a 6.
b)
odds of drawing a card below a 6.
c) We should expect to draw a card below 6 about 4 times out of 13 attempts, which as an odd, it also 4 times for every 9 times we draw a card above 6, which is the third option.
------------------------------
- A probability is the <u>number of desired outcomes divided by the number of total outcomes</u>.
Item a:
- In a standard deck, there are 52 cards.
- There are 4 types of cards, each numbered 1 to 13. Thus,
are less than 6.
Then:

probability of drawing a card below a 6.
Item b:
- Converting from probability to odd, it is:

odds of drawing a card below a 6.
Item c:
- The law of large numbers states that with a <u>large number of trials, the percentage of each outcome is close to it's theoretical probability.</u>
- Thus, we should expect to draw a card below 6 about 4 times out of 13 attempts, which as an odd, it also 4 times for every 9 times we draw a card above 6, which is the third option.
A similar problem is given at brainly.com/question/24233657
Answer:
a=1/2 b=5/4 c=2^5/4 . ??
Step-by-step explanation:
I am not sure if the a is supposed to be a second exponent but I solved this as if it wasn't.
The green arrow thing is a ray. So, question b. is a ray. So the dot would be B and the arrow would be C.
Total number of students surveyed = 200
Number of male students = 80
Number of female students = 200 - 80 = 120
Number of brown eyed male students = 60
Probability of a brown eyed male student = 60 / 80 = 0.75.
Since, <span>eye color and gender are independent, this means that eye color is not affected by the gender. Thus, we expect a similar probability of brown eye for female as we had for male.
Let the number expected of brown eyed females be x, then x / 120 = 0.75.
Thus, x = 120(0.75) = 90.
Therefore, the number female students surveyed expected to be brown eyed is 90.</span>