Set up a differential equation using rate of salt going in minus rate going out.
Rate = dS/dt = salt/gal* gal/min
Also the number of gallons in tank is increasing at (4-2) gal/min = 2 gal/min
The volume of tank at any given time = 100+2t
Differential Equation:
![\frac{dS}{dt} = (\frac{1}{4})(4) - (\frac{S}{100+2t}) (2) \\ \\ \frac{dS}{dt} = 1 - \frac{S}{t + 50} \\ \\ \frac{dS}{dt} + (\frac{1}{t+50}) S = 1](https://tex.z-dn.net/?f=%5Cfrac%7BdS%7D%7Bdt%7D%20%3D%20%28%5Cfrac%7B1%7D%7B4%7D%29%284%29%20-%20%28%5Cfrac%7BS%7D%7B100%2B2t%7D%29%20%282%29%0A%20%5C%5C%20%20%5C%5C%20%20%5Cfrac%7BdS%7D%7Bdt%7D%20%3D%201%20-%20%5Cfrac%7BS%7D%7Bt%20%2B%2050%7D%20%5C%5C%20%20%5C%5C%20%20%5Cfrac%7BdS%7D%7Bdt%7D%20%2B%20%28%5Cfrac%7B1%7D%7Bt%2B50%7D%29%20S%20%3D%201)
Use integrating factor of t+50
![[S(t+50)]' = t+50](https://tex.z-dn.net/?f=%5BS%28t%2B50%29%5D%27%20%3D%20t%2B50)
Integrate both sides
![S(t+50) = \frac{t^2}{2} + 50t + c](https://tex.z-dn.net/?f=S%28t%2B50%29%20%3D%20%5Cfrac%7Bt%5E2%7D%7B2%7D%20%2B%2050t%20%2B%20c)
Solve for constant c given S(0) = 20
c = 1000
Tank is full at 200 gallons when t =50
100+2t = 200 ---> t = 50
S(50) = 47.5
Final Answer: There are 47.5 pounds of salt