The net force acting on the box of mass 1.75kg when it is pushed across a ground with coefficient of friction k=0.267 with a force of 8.35N, is 3.77N.
To find the answer, we have to know more about the basic forces acting on a body.
<h3>How to find the net force on the box?</h3>
- Let us draw the free body diagram of the given box with the data's given in the question.
- From the diagram, we get,

where, N is the normal reaction, mg is the weight of the box,
is the net force, f is the kinetic friction.
- We have the expression for kinetic friction as,

- Thus, the net force will be,

Thus, we can conclude that, the net force acting on the box of mass 1.75kg when it is pushed across a ground with coefficient of friction k=0.267 with a force of 8.35N, is 3.77N.
Learn more about the basic forces on a body here:
brainly.com/question/28061293
#SPJ1
Answer:
Explanation:
Energy of radiation in eV = 1237.5/280 = 4.42 eV.
Work function = 2.65 eV.
Maximum kinetic energy = 4.42 - 2.65 = 1.77 eV.
Answer: It's the third one.
Explanation:
Work = Force * distance
He's going up an incline but pushing parallel to the ground. Draw out a diagram to show what's going on. )
Work = force* distance*Cos(incline angle)
60 N force * 10 meters * cos(30)
= 519.61 J
Answer:
Explanation: The planet average distance = 42300km
Kepler's 3rd Law also known as the Harmonic Law states that;
for each planet orbitting the sun, its side real period squared divided by the cube of the semi-major axis of the orbit is a constant.
A planet, mass m, orbits the sun, mass M, in a circle of radius r and a period t. The net force on the planet is a centripetal force, and is caused the force of gravity between the sun and the planet.
Please find the attached file for the solution