The radio frequencies push one air molecule that then bumps into a different air molecule.....which then hits another and another causing a line of crashing molecules that lead inside your ear and hits your ear drum causing it to vibrate which causes the sounds.
Answer:
Explanation:
The main equation to solve this is F = ma, where F is the force applied to the brakes with respect to its acceleration. We have the mass that we need, but we do not have the acceleration. That's the first thing we have to find. However, our velocity needs to be stated in m/s and right now it's in km/h. Converting that:
Now we're ready to find the acceleration:
where the top line there translates to the final velocity minus the initial velocity.
so the acceleration is -8.3 m/s/s
We can use that now in the force equation above:
F = 1200(-8.3) and
F = -1.0 × 10⁴ N (that's 10,000 N to the correct number of sig dig's; the negative sign means that the force is being applied in the direction opposite to that which the van is currently moving)
Answer:
Edwin Hubble found that galaxies are constantly moving away from us. According to his observations with the Hubble Space Telescope, galaxies are moving at different speeds. This shows that the universe is expanding. The farther away a galaxy is, the faster it is moving away. Found this on google hope this helps.
Answer:
12.3 m/s
Explanation:
The Doppler equation describes how sound frequency depends on relative velocities:
fr = fs (c + vr)/(c + vs),
where fr is the frequency heard by the receiver,
fs is the frequency emitted at the source,
c is the speed of sound,
vr is the velocity of the receiver,
and vs is the velocity of the source.
Note: vr is positive if the receiver is moving towards the source, negative if away.
Conversely, vs is positive if the receiver is moving away from the source, and negative if towards.
Given:
fs = 894 Hz
fr = 926 Hz
c = 343 m/s
vs = 0 m/s
Find: vr
926 = 894 (343 + vr) / (343 + 0)
vr = 12.3
The speed of the car is 12.3 m/s.