1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bas_tet [7]
3 years ago
13

Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.

Mathematics
2 answers:
pickupchik [31]3 years ago
8 0

Answer:

the answer to the question is 13x

valentina_108 [34]3 years ago
4 0

Answer : The sum of these quotients is, 13x

Step-by-step explanation :

As we are given that:

Quotients are, \frac{25x^2}{5x} and \frac{8x^2}{x}

Now we have to determine the sum of these quotients.

Sum of quotients = \frac{25x^2}{5x}+\frac{8x^2}{x}

Now we are taking LCM.

Sum of quotients = \frac{25x^2+40x^2}{5x}

Sum of quotients = \frac{65x^2}{5x}

Sum of quotients = 13x

Therefore, the sum of these quotients is, 13x

You might be interested in
-8x+32=4(-2-4x)<br>What does X equal ​
marshall27 [118]

Answer:

x = - 5

Step-by-step explanation:

Given

- 8x + 32 = 4(- 2 - 4x) ← distribute parenthesis on right side

- 8x + 32 = - 8 - 16x ( add 16x to both sides )

8x + 32 = - 8 ( subtract 32 from both sides )

8x = - 40 ( divide both sides by 8 )

x = - 5

7 0
3 years ago
Please solve I need help!
ladessa [460]
24 is the answer welcome !
5 0
3 years ago
1) Find the Range of the following number set: (22,7, 22, 1, 7, 18, 18, 16, 6, 6} 2 points
lisabon 2012 [21]

Answer:

RANGE=21

Step-by-step explanation:

Least to greatest is KEY!

7 0
3 years ago
“encontrar la integral indefinida y verificar el resultado mediante derivación”
Oliga [24]

I=\displaystyle\int\frac x{(1-x^2)^3}\,\mathrm dx

Haz la sustitución:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{y^3}=\frac1{4y^2}+C=\frac1{4(1-x^2)^2}+C

Para confirmar el resultado:

\dfrac{\mathrm dI}{\mathrm dx}=\dfrac14\left(-\dfrac{2(-2x)}{(1-x^2)^3}\right)=\dfrac x{(1-x^2)^3}

I=\displaystyle\int\frac{x^2}{(1+x^3)^2}\,\mathrm dx

Sustituye:

y=1+x^3\implies\mathrm dy=3x^2\,\mathrm dx

\implies I=\displaystyle\frac13\int\frac{\mathrm dy}{y^2}=-\frac1{3y}+C=-\frac1{3(1+x^3)}+C

(Te dejaré confirmar por ti mismo.)

I=\displaystyle\int\frac x{\sqrt{1-x^2}}\,\mathrm dx

Sustituye:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{\sqrt y}=-\frac12(2\sqrt y)+C=-\sqrt{1-x^2}+C

I=\displaystyle\int\left(1+\frac1t\right)^3\frac{\mathrm dt}{t^2}

Sustituye:

u=1+\dfrac1t\implies\mathrm du=-\dfrac{\mathrm dt}{t^2}

\implies I=-\displaystyle\int u^3\,\mathrm du=-\frac{u^4}4+C=-\frac{\left(1+\frac1t\right)^4}4+C

Podemos hacer que esto se vea un poco mejor:

\left(1+\dfrac1t\right)^4=\left(\dfrac{t+1}t\right)^4=\dfrac{(t+1)^4}{t^4}

\implies I=-\dfrac{(t+1)^4}{4t^4}+C

4 0
3 years ago
Work out the value of each expression, when r= 2.5 and t = 6.
Usimov [2.4K]

Answer:

a)  4(t - r) = 4(6 - 2.5) = 4 x 3.5 = 14

b)  4t - r = (4 x 6) - 2.5 = 24 - 2.5 = 21.5

c)  2(3t - 10) = 2(3 x 6 - 10) = 2(18 - 10) = 2 x 8 = 16

d)  (t - 2)² = (6 - 2)² = 4² = 4 x 4 = 16

e) cannot decipher the equation

f)  6r + t = 6 x 2.5 + 6 = 15 + 6 = 21

8 0
2 years ago
Read 2 more answers
Other questions:
  • If m1 + m3 = 154°, what is m2? Question 1 options: 26° 116° 156° 29°If m1 + m3 = 154°, what is m2?
    14·2 answers
  • PLEASE HELP!!!!
    13·2 answers
  • Whats a square number?
    7·2 answers
  • (−2/3)x(1/6) please answer
    8·2 answers
  • Identify the transformation that maps the regular hexagon with a center (-7, 3.5) onto itself
    7·2 answers
  • Which is equivalent
    9·2 answers
  • Find the mean and the median of the following data
    10·2 answers
  • Tn=2n-5n, find t7=<br> A)93<br> B)21<br> C)75<br> D)54
    14·1 answer
  • Draw and label what in the picture​
    7·1 answer
  • What is the sum of 5/7+5/6​?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!