The frequency increases.
Here's an easy way to think about this. The wavelength is the distance from crest to crest, or trough to trough -- equivalently, it's the distance the wave travels in one period. This means that the speed of the wave is the wavelength divided by the period, or <span><span>v=<span>λT</span></span><span>v=<span>λT</span></span></span> . But the frequency is just the reciprocal of the period, so <span><span>v=λf</span><span>v=λf</span></span>. Clearly, if v increases and the frequency stays the same, the wavelength must increase by an equivalent factor.
The correct answer is option (d) They allow the exchange of gases between cells in the leaf and the external environment.
Stomata are the tiny openings present in the epidermis (outer layer of cells) of the leaf. They have a pore which is guarded by the guard cells which controls the opening and closing of the stomata. Air enters and exits through the stomata.
The main funtion of stomata is to facilitate the gaseous exchange. The gas exchange that occurs when the stomata are open helps in the process of photosynthesis. During photosynthesis, carbon dioxide is taken in from the atmosphere and oxygen is released as a by-product of photosynthesis. The glucose produced is converted into the starch and stored in the leaves.
Also, water vapour diffuses through the stomata into the atmosphere by a process called the transpiration.
Thus, stomata are the structures that are mainly involved in the gaseous exchange between the cells of the leaf and the atmosphere.