They do this in order to survive their new environment. If they didn't adapt, then they would die!
Answer:
Here it is (sorry its late)
Explanation:
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
docx
</span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark">
docx
</span>
Explanation:
Part A
Boiling point of HF is much higher as compared to the boiling point of HCl.
Reason:
The strongest inter molecular hydrogen bonding exist between HF molecules This is due to highly electronegative Fluorine atom.
Part B
The type of bonding present in the given compounds are:
1. Ice
The water molecules in ice are linked to each other through intermolecular hydrogen bonding due to the presence of electronegative oxygen atom that is attached to hydrogen atom.
2. Copper dioxide
In Copper dioxide, Copper and oxide ions are linked to each other via electrostatic force of attraction due to the presence of electronegative Oxygen atom and electropositive Cu atom.
Therefore, ionic bond is present in it.
3. Steel
In steel, metal and negatively charged electrons are linked to each other, thus giving rise to metallic bond between steel molecules.
4. Silicon elastomer
In silicon elastomer, Silicon atom is linked to other atom via covalent bonds due to sharing of electrons.
5. Tungsten
In the case of tungsten also, atoms are bonded to each other via metallic bond.
Answer:
Density = 11.4 g/cm³
Explanation:
Given data:
Density of lead = ?
Height of lead bar = 0.500 cm
Width of lead bar = 1.55 cm
Length of lead bar = 25.00 cm
Mass of lead bar = 220.9 g
Solution:
Density = mass/ volume
Volume of bar = length × width × height
Volume of bar = 25.00 cm × 1.55 cm × 0.500 cm
Volume of bar = 19.4 cm³
Density of bar:
Density = 220.9 g/ 19.4 cm³
Density = 11.4 g/cm³
Answer:
Decomposition and Al and P
they might be looking for thermal decompositioin as this one happens at 2000 degrees
Explanation: