Answer:
M' (1.5, -1), F' (2, -1), L' (0.5 -2.5), W' (2.5, -2.5)
see graph below
Explanation:
Given:
The image of a quadrilateral on a coordinate plane
To find:
The coordinates of the new image after dilation of 1/2 have been applied to the original image.
Then graph the coordinates
First, we need to state the coordinates of the original image:
M = (3, -2)
F = (4, -2)
L = (1, -5)
W = (5, -5)
Next, we will apply a scale factor of 1/2:
![\begin{gathered} Dilation\text{ rule:} \\ (x,\text{ y\rparen}\rightarrow(kx,\text{ ky\rparen} \\ where\text{ k = scale factor} \\ \\ scale\text{ factor = 1/2} \\ M^{\prime}\text{ = \lparen}\frac{1}{2}(3),\text{ }\frac{1}{2}(-2)) \\ M^{\prime}\text{ = \lparen}\frac{3}{2},\text{ -1\rparen} \\ \\ F\text{ = \lparen}\frac{1}{2}(4),\text{ }\frac{1}{2}(-2)) \\ F^{\prime}\text{ = \lparen2, -1\rparen} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20Dilation%5Ctext%7B%20rule%3A%7D%20%5C%5C%20%28x%2C%5Ctext%7B%20y%5Crparen%7D%5Crightarrow%28kx%2C%5Ctext%7B%20ky%5Crparen%7D%20%5C%5C%20where%5Ctext%7B%20k%20%3D%20scale%20factor%7D%20%5C%5C%20%20%5C%5C%20scale%5Ctext%7B%20factor%20%3D%201%2F2%7D%20%5C%5C%20M%5E%7B%5Cprime%7D%5Ctext%7B%20%3D%20%5Clparen%7D%5Cfrac%7B1%7D%7B2%7D%283%29%2C%5Ctext%7B%20%7D%5Cfrac%7B1%7D%7B2%7D%28-2%29%29%20%5C%5C%20M%5E%7B%5Cprime%7D%5Ctext%7B%20%3D%20%5Clparen%7D%5Cfrac%7B3%7D%7B2%7D%2C%5Ctext%7B%20-1%5Crparen%7D%20%5C%5C%20%20%5C%5C%20F%5Ctext%7B%20%3D%20%5Clparen%7D%5Cfrac%7B1%7D%7B2%7D%284%29%2C%5Ctext%7B%20%7D%5Cfrac%7B1%7D%7B2%7D%28-2%29%29%20%5C%5C%20F%5E%7B%5Cprime%7D%5Ctext%7B%20%3D%20%5Clparen2%2C%20-1%5Crparen%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} L\text{ = \lparen}\frac{1}{2}(1),\text{ }\frac{1}{2}(-5)) \\ L^{\prime}\text{ = \lparen}\frac{1}{2},\text{ }\frac{-5}{2}) \\ \\ W\text{ = \lparen}\frac{1}{2}(5),\text{ }\frac{1}{2}(-5)) \\ W^{\prime}\text{ = \lparen}\frac{5}{2},\text{ }\frac{-5}{2}) \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20L%5Ctext%7B%20%3D%20%5Clparen%7D%5Cfrac%7B1%7D%7B2%7D%281%29%2C%5Ctext%7B%20%7D%5Cfrac%7B1%7D%7B2%7D%28-5%29%29%20%5C%5C%20L%5E%7B%5Cprime%7D%5Ctext%7B%20%3D%20%5Clparen%7D%5Cfrac%7B1%7D%7B2%7D%2C%5Ctext%7B%20%7D%5Cfrac%7B-5%7D%7B2%7D%29%20%5C%5C%20%20%5C%5C%20W%5Ctext%7B%20%3D%20%5Clparen%7D%5Cfrac%7B1%7D%7B2%7D%285%29%2C%5Ctext%7B%20%7D%5Cfrac%7B1%7D%7B2%7D%28-5%29%29%20%5C%5C%20W%5E%7B%5Cprime%7D%5Ctext%7B%20%3D%20%5Clparen%7D%5Cfrac%7B5%7D%7B2%7D%2C%5Ctext%7B%20%7D%5Cfrac%7B-5%7D%7B2%7D%29%20%5Cend%7Bgathered%7D)
The new coordinates:
M' (3/2, -1), F' (2, -1), L' (1/2, -5/2), W' (5/2, -5/2)
M' (1.5, -1), F' (2, -1), L' (0.5 -2.5), W' (2.5, -2.5)
Plotting the coordinates: