Answer:
Axel: Much of the water is in the air around us.
Explanation:
When a puddle of water forms on the ground, it indicates that much of the ground around it is saturated with water and as such, the water would not readily soak into the ground. Also, since the puddle was found in a park, it is not likely that the water has gone into a stream, river, pond, lake, or ocean.
Since, the day was a sunny, it means that the heat from the sun has caused the evaporation of the water molecules. However, the water vapor molecules do not just immediately rise up to the atmosphere to form clouds nor do they cease to exist, rather it is dispersed in the air around the surroundings and beyond. Formation of clouds by water vapor takes days to happen.
Also, the water has not changed to fog either as they form usually at cooler temperatures.
Answer:
<h3>no it is not allowed</h3>
Explanation:
<h3>Liwis structure shows the elements symbol with dots thet represents valance electrons ; in second row elements their atomic number is 3 up to 10 , from Li up to Ne from their electron configuration their valance electron will be from 1 up to 8 respectivelly ,if lewis structure represents the element with it is symbol and dots that represents valance electron the second row elements cannot have more than an octet of valance electrons surrounding it.</h3>
<h3>I think it is help ful for you </h3>
By the second law of thermodynamics:
Heat can not spontaneously flow from cold regions to hot regions without external work being performed on a system.
Heat transfer is the passage of thermal energy from a hot ( t B = 80° C ) to a colder body ( t A = 40° C ).
Answer: B ) Heat flows from object B to object A.
Answer:
1.00 × 10¹⁸
Explanation:
1. Calculate the <em>energy of one photon</em>
The formula for the energy of a photon is
<em>E</em> = <em>hc</em>/λ
<em>h</em> = 6.626 × 10⁻³⁴ J·s; <em>c</em> = 2.998 × 10⁸ m·s⁻¹
λ = 477 nm = 477 × 10⁻⁹ m Insert the values
<em>E</em> = (6.626 × 10⁻³⁴ × 2.998× 10⁸)/(477 × 10⁻⁹)
<em>E</em> = 4.165× 10⁻¹⁹ J
2. Calculate the <em>number of photons</em>
Divide the total energy by the energy of one photon.
No. of photons = 0.418 × 1/4.165 × 10⁻¹⁹
No. of photons = 1.00 × 10¹⁸
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as system's mass cannot change, so quantity cannot be added nor removed. Hence, the quantity of mass is conserved over time.
The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form. For example, in chemical reactions, the mass of the chemical components before the reaction is equal to the mass of the components after the reaction. Thus, during any chemical reaction and low-energy thermodynamic processes in an isolated system, the total mass of the reactants, or starting materials, must be equal to the mass of the products.
According to the Law of Conservation, all atoms of the reactant(s) must equal the atoms of the product(s).
As a result, we need to balance chemical equations. We do this by adding in coefficients to the reactants and/or products. The compound(s) itself/themselves DOES NOT CHANGE.