Answer:
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓
Ksp = [2s]² . [s] → 4s³
Explanation:
Ag₂CrO₄ → 2Ag⁺ + CrO₄⁻²
Chromate silver is a ionic salt that can be dissociated. When we have a mixture of both ions, we can produce the salt which is a precipitated.
2Ag⁺ (aq) + CrO₄⁻² (aq) ⇄ Ag₂CrO₄ (s) ↓ Ksp
That's the expression for the precipitation equilibrium.
To determine the solubility product expression, we work with the Ksp
Ag₂CrO₄ (s) ⇄ 2Ag⁺ (aq) + CrO₄⁻² (aq) Ksp
2 s s
Look the stoichiometry is 1:2, between the salt and the silver.
Ksp = [2s]² . [s] → 4s³
Answer:
0.9 moles of water
Explanation:
Use mole ratios:
5 : 6
divide by 5 on both sides
1 : 1.2
multiply by 0.75 on both sides
0.75 : 0.9
So the result is 0.9 moles of water
(Please correct me if I'm wrong)
1) Find the number of mols of HCl in 5.2 liters of 4.0M solution:
n = M*V(L) = 4.0 mol/L * 5.2 L = 20.8 mol
2) Find the number of mols of Mg that will react with 20.8 mol of HCl, using the coefficients of the balanced equation
[1mol Mg / 2 mol HCl] * 20.8 mol HCl = 10.4 mol Mg
3) Transform mol to mass using the atomic mass:
10.4 mol Mg * 24.3 g/mol = 252.7 g of Mg.
Mabye yurrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
Answer:
All elements in the same A group will have the same number of
valence electrons.
Explanation:
Group A has 1 valence electrons.