Answer:
<em>firstly</em><em> find</em><em> the</em><em> gradient</em><em> given</em><em> by</em><em> the</em><em> equation</em>
<em>m=</em><em>y2-y1</em><em>/</em><em>x2-x1</em>
<em>in this </em><em>case</em><em> </em><em>x1 </em><em>is </em><em>-</em><em>1</em><em>2</em><em>,</em><em>x2 </em><em>is </em><em>-</em><em>1</em><em>7</em><em>,</em><em> </em><em>y1 </em><em>is </em><em>-8 </em><em>and </em><em>y2 </em><em>is</em><em>-</em><em>1</em><em>6</em>
<em>m=</em><em>-</em><em>1</em><em>6</em><em>+</em><em>8</em><em>/</em><em>-</em><em>1</em><em>7</em><em>+</em><em>1</em><em>2</em>
<em> </em><em> </em><em> </em><em>=</em><em>-</em><em>8</em><em>/</em><em>-</em><em>5</em><em> </em><em>or1.</em><em>6</em>
<em>then</em><em> </em><em>use </em><em>the </em><em>equation</em>
<em>y-y1</em><em>=</em><em>m(</em><em>x-x1</em><em>)</em>
y+8=1.6(x+12)
y+8=1.6x+19.2
y=1.6x+11.2
I hope this helps and sorry if it's wrong
Answer:
80.0238
Step-by-step explanation:
Answer:
x=9; JL= 23
Step-by-step explanation:
To find x:
If JL and KM are equivalent, then JL = KM. Substitute the equations and you get 2x+5 = 7x-40.
Put the similar terms on the same side by subtracting 2x from both sides and adding 40 to both sides. You will get 45=5x.
Get x alone by dividing both sides by 5 and you will get 9=x.
To find JL:
Substitute the x in 2x+5 (JL length equation) with 9. Your new equation will be 2(9) + 5.
2•9 = 18.
18+5=23
First combine like terms on each side so
8x = -7x
then move -7x
so x=0
Check below, please.
1) Let's fill in that graphic organizer, considering the following
Dot Plot
Characteristics
This is represented by dots above the axis. These dots stands for the frequency of each data value.
Representation
We can represent them by:
Visual:
2) Now, let's proceed with the Histogram
Characteristics
A Histogram has much resemblance to a bar chart, the frequencies of each data point are represented by bars coming from the x-axis.
Representation
Notice that the y-axis marks the
frequency of each data point on the x-axis
Visual:
3) Box Plot or Box and Whiskers
This graphical representation
Representation:
Literally, in this graph, we have a box (indicating the Q1, Q2, and Q3) ie. the quartiles, and a line "the whiskers" for the outliers.
Visual: