B because first you do the two triangles which =3 then you get the area for the square in the middle which is 15 then you add them up to get 18
Answer:no not in amillion years
Step-by-step explanation:hehe nahhhhhhhhhh lll
Answer:
first, find the area of the circle cut.
r= 3 feet
π=3.14
area of a circle= πr²= 3.14×3×3= 28.26 sq.feet
Now, find the area of the rectangle and subtract it by the area of the circle.
area of rectangle = l×b
length of the rectangle= 16 feet
breadth/width of the rectangular garden= 14 feet
area= 16×14= 224 sq. feet
now, area of the garden surrounding the koi pond= 224-28.26
=195.74 sq. feet
Answer:
The area of the shaded region is 42.50 cm².
Step-by-step explanation:
Consider the figure below.
The radius of the circle is, <em>r</em> = 5 cm.
The sides of the rectangle are:
<em>l</em> = 11 cm
<em>b</em> = 11 cm.
Compute the area of the shaded region as follows:
Area of the shaded region = Area of rectangle - Area of circle
![=[l\times b]-[\pi r^{2}]\\\\=[11\times 11]-[3.14\times 5\times 5]\\\\=121-78.50\\\\=42.50](https://tex.z-dn.net/?f=%3D%5Bl%5Ctimes%20b%5D-%5B%5Cpi%20r%5E%7B2%7D%5D%5C%5C%5C%5C%3D%5B11%5Ctimes%2011%5D-%5B3.14%5Ctimes%205%5Ctimes%205%5D%5C%5C%5C%5C%3D121-78.50%5C%5C%5C%5C%3D42.50)
Thus, the area of the shaded region is 42.50 cm².
When ur polynomial has more then one variable....and this one does...the degree is the highest term degree
7a^3b^2 ....this term has a degree of 5
2a^4...this term has a degree of 4
4b....this term has a degree of 1
15....this term has a degree of 0
so the highest degree term has a degree of 5....so that is the degree of this polynomial.
now if u just had 1 variable, the degree would be the highest exponent