<span>(a) what is the average volume (in cubic meters) required for each iron atom
For this case, the density of Iron would be </span>7.87g/cm³
<span>
V = 9.27 x 10^-26 kg / </span>7.87g/cm<span>³ ( 1 kg / 1000 g)
</span>V = 1.18 x 10-23 cm³<span>
(b) what is the distance (in meters) between the centers of adjacent atoms?
We assume the atoms as cube, so we use the volume of the cube to calculate the distance of the atoms.
V = </span>1.18 x 10-23 cm<span>³ = s</span>³
s = 2.28 x 10^-8 cm
A I think I could be wrong I’m not good at this
Answer:
It has a lower density in its solild stae than it does in its liquid state.
Explanation:
Ice floats, allowing life underneath to leave despite the top freezing.
Although it is omitted, the reaction equation for the decomposition of phosphorus pentachloride is:
PCl₅ → PCl₃ + Cl₂
The equilibrium constant's equation then becomes:
Kc = [PCl₃]*[Cl₂] / [PCl₅]
Kc = (0.02 * 0.02) / 0.0095
Kc = 0.042
The equilibrium constant is 0.042.
O Sounds like the best answer