Yes it could, but you'd have to set up the process very carefully.
I see two major challenges right away:
1). Displacement of water would not be a wise method, since rock salt
is soluble (dissolves) in water. So as soon as you start lowering it into
your graduated cylinder full of water, its volume would immediately start
to decrease. If you lowered it slowly enough, you might even measure
a volume close to zero, and when you pulled the string back out of the
water, there might be nothing left on the end of it.
So you would have to choose some other fluid besides water ... one in
which rock salt doesn't dissolve. I don't know right now what that could
be. You'd have to shop around and find one.
2). Whatever fluid you did choose, it would also have to be less dense
than rock salt. If it's more dense, then the rock salt just floats in it, and
never goes all the way under. If that happens, then you have a tough
time measuring the total volume of the lump.
So the displacement method could perhaps be used, in principle, but
it would not be easy.
Volume of Cl₂(g) is produced at 1.0 atm and 540.°C=4.5×10^4 L
As per the evenly distributed response
2NaCl (g) ----> 2Na(l)+ Cl2(g)
Calculate the amount of Cl2 that was formed as indicated below:
Moles of Cl2 = 31.0 kg of Na x (1000* 1 * 1 / 1*23* 2)
= 673.9 mol
P is equal to 1.0 atm, and T is equal to 813.15 K
when converted to Kelvin by multiplying by a factor of 273.15.
Using Cl2 as an ideal gas, determine the in the following volume:
volume = nRT/P
= 673.9 * 0.0821 * 813.15/ 1
=4.5×10^4 L
As a result, the volume of Cl2 under the given circumstances =4.5×10^4 L
Learn more about Volume here:
brainly.com/question/13338592
#SPJ4
Hey there!
I can't be sure my answers are the exact words, but it should be something along the lines of...
The amount of water on Earth is constant, but the form and location of the water changes as it moves through the water cycle.
This means that Earth has always had the same amount of water within in, along with it being the same water the whole time. No new water was introduced to our planet. Some of our water is liquid, some is solid, and some is gas. Some is deep in the soil and some is high up in the atmosphere. Some is in rain and some is in snow.
I hope this helps!
There are
4.517
⋅
10
23
atoms of Zn in 0.750 mols of Zn.