<span>To find the molar mass, look at a periodic table for each element.
Ibuprofen, C13 H18 and O2. Carbon has a molar mass of 12.01 g, Hydrogen has 1.008 g per mole, and Oxygen is 16.00 g per mole.
C: 13 * 12.01
H: 18 * 1.008
O: 2 * 16.00
Calculate that, add them all together, and that is the molar mass of C13H18O2.
Molar mass: 206.274
Next, you have 200mg in each tablet, with a ratio of C13H18O2 (molar mass) in GRAMS per Mole
So, you need to convert miligrams into grams, which is 200 divided by 1000.
0.2 g / Unknown mole = 206.274 g / 1 Mole
This is a cross multiplying ratio where you're going to solve for the unknown moles of grams per tablet compared to the moles per ibuprofen.
So, it's set up as:
0.2 g * 1 mole = 206.274 * x
0.2 = 206.274x
divide each side by 206.274 to get X alone
X = 0.00097
or 9.7 * 10^-4 moles
The last problem should be easy to figure out now that you have the numbers. 1 dose is 2 tablets, which is the moles we just calculated above, times four for the dosage.
</span>
Okay
40ml-35ml=5ml
5ml is the volume of the rock
1ml=1cm3
hence the volume of the rock is 5cm3
Answer: Diffusion is the movement of particles from a high to low particle concentration, while osmosis is the movement of water from a high to a low water concentration.
Explanation:
Answer:
sodium sulfate
Explanation:
For naming an ionic compound with polyatomic anion, the metal is written first using its element name followed by name of the polyatomic anion. Therefore, the compound with Na+Na+ cation and SO2−4SO42− anion is named as sodium sulfate.
Given that
Mass of water = 65.34 g
Amount of heat = mass of water * specific heat (temperature change
)
= 65.34 g * 4.184 J / g-C ( 21.75-18.43 )C
= 907.63 J
= 0.908 KJ
And
1 cal = 4.186798 J
907.63 J * 1 cal / 4.186798 J =216.78 cal
Or0.218 kcal