Answer:
y = 3
Step-by-step explanation:
Let's start with the left side of the equation.
5(y-2)-2= 2(y+1)-5
5y-10-2= 2(y+1)-5
Now let's solve the right side
5y-10-2= 2y+2-5
5y-12= 2y-3
-2y -2y
3y-12=-3
+12 +12
3y = 9
3y/3 = 9/3
y = 3
hope this helps!
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Coordinates (x, y)
- Slope Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
Point (0, -5)
Point (-2, 1)
<u>Step 2: Find slope </u><em><u>m</u></em>
Simply plug in the 2 coordinates into the slope formula to find slope <em>m</em>
- Substitute in points [Slope Formula]:

- [Fraction - Denominator] Simplify:

- [Fraction - Numerator] Subtract:

- [Fraction - Denominator] Add:

- [Fraction] Divide:

We have to solve this equation:

Third degree polynomials like this one are not easily solved, but this one has a root at x = 0. The let us factorize this polynomial as x times a second degree polynomial:

Now we can find the roots of the quadratic polynomial as:
![\begin{gathered} x=\frac{-(-6)\pm\sqrt[]{(-6)^2-4\cdot1\cdot6}}{2\cdot1} \\ x=\frac{6\pm\sqrt[]{36-24}}{2} \\ x=\frac{6\pm\sqrt[]{12}}{2} \\ x=\frac{6\pm\sqrt[]{4\cdot3}}{2} \\ x=\frac{6\pm2\sqrt[]{3}}{2} \\ x=3\pm\sqrt[]{3} \\ x_1=3-\sqrt[]{3} \\ x_2=3+\sqrt[]{3} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B-%28-6%29%5Cpm%5Csqrt%5B%5D%7B%28-6%29%5E2-4%5Ccdot1%5Ccdot6%7D%7D%7B2%5Ccdot1%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm%5Csqrt%5B%5D%7B36-24%7D%7D%7B2%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm%5Csqrt%5B%5D%7B12%7D%7D%7B2%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm%5Csqrt%5B%5D%7B4%5Ccdot3%7D%7D%7B2%7D%20%5C%5C%20x%3D%5Cfrac%7B6%5Cpm2%5Csqrt%5B%5D%7B3%7D%7D%7B2%7D%20%5C%5C%20x%3D3%5Cpm%5Csqrt%5B%5D%7B3%7D%20%5C%5C%20x_1%3D3-%5Csqrt%5B%5D%7B3%7D%20%5C%5C%20x_2%3D3%2B%5Csqrt%5B%5D%7B3%7D%20%5Cend%7Bgathered%7D)
Then, the solutions to the equation are:
x = 0
x = 3 - √3
x = 3 + √3
Focus of a parabola:

where vertex (h,k) p is the distance from vertex to focus