We have been given that you drop a ball from a window 50 metres above the ground. The ball bounces to 50% of its previous height with each bounce. We are asked to find the total distance traveled by up and down from the time it was dropped from the window until the 25th bounce.
We will use sum of geometric sequence formula to solve our given problem.
, where,
a = First term of sequence,
r = Common ratio,
n = Number of terms.
For our given problem
,
and
.





Therefore, the ball will travel 100 meters and option B is the correct choice.
Answer:

Step-by-step explanation:
The given absolute value function is

This is the base or the parent function.
The transformation
will shift the parent function b units to the left and c units up.
From the question, b=4 units and c=2 units.
The new equation is 
H(-6) = 2(-6) + 5
h(-6) = -12 + 5
Solution: h(-6) = -7
The ratio of the height (h) of the streetlight to its distance to the end of Laura's shadow is the same as the ratio of Laura's height to her distance from the end of her shadow.
.. h/(12+9) = 5'4"/9
.. h = (21/9)*5'4" = 12 4/9 feet
.. h = 12 ft 5 1/3 inches
The streetlight is 12 ft 5 1/3 inches tall.