Answer:
<h2>
50+50i</h2>
Step-by-step explanation:
Given the expression (2 + i)(3 - i)(1 + 2i)(1 - i)(3 + i), we are to take the product of all the complex values. We must note that i² = -1.
Rearranging the expression [(3 - i)(3 + i)] [(2 + i)(1 - i)](1 + 2i)
On expansion
(3 - i)(3 + i)
= 9+3i-3i-i²
= 9-(-1)
= 9+1
(3 - i)(3 + i) = 10
For the expression (2 + i)(1 - i), we have;
(2 + i)(1 - i)
= 2-2i+i-i²
= 2-i+1
= 3-i
Multiplying 3-i with the last expression (1 + 2i)
(2 + i)(1 - i)(1 + 2i)
= (3-i)(1+2i)
= 3+6i-i-2i²
= 3+5i-2(-1)
= 3+5i+2
= 5+5i
Finally, [(3 - i)(3 + i)] [(2 + i)(1 - i)(1 + 2i)]
= 10(5+5i)
= 50+50i
Hence, (3 - i)(3 + i)(2 + i)(1 - i)(1 + 2i) is equivalent to 50+50i
11, 60, 61 side lengths are a pythagorean triple.
The equation for slope between two points is (y1-y2)/x1-x2
Plug the points into the equation
-5-(-10)/-2-3
5/5
m=1
To find the equation, use y-y1=m(x-x1)
y-(-5)=1(x-(-2))
y+5=x+2
y=x+2-5
y=x-3
Round 28 to nearest ten and 868 to nearest hundred
900 ÷ 30 = 30