1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
navik [9.2K]
3 years ago
14

3. A rocket is launched at an angle of 53 degrees above the 1 point

Physics
1 answer:
irina1246 [14]3 years ago
3 0

Answer:

24,000 m

Explanation:

First find the rocket's final position and velocity during the first phase in the y direction.

Given:

v₀ = 75 sin 53° m/s

t = 25 s

a = 25 sin 53° m/s²

Find: Δy and v

Δy = v₀ t + ½ at²

Δy = (75 sin 53° m/s) (25 s) + ½ (25 sin 53° m/s²) (25 s)²

Δy = 7736.8 m

v = at + v₀

v = (25 sin 53° m/s²) (25 s) + (75 sin 53° m/s)

v = 559.0 m/s

Next, find the final position of the rocket during the second phase (as a projectile).

Given:

v₀ = 559.0 m/s

v = 0 m/s

a = -9.8 m/s²

Find: Δy

v² = v₀² + 2aΔy

(0 m/s)² = (559.0 m/s)² + 2 (-9.8 m/s²) Δy

Δy = 15945.5 m

The total displacement is:

7736.8 m + 15945.5 m

23682.2 m

Rounded to two significant figures, the maximum altitude reached is 24,000 m.

You might be interested in
The higher the voltage across a bulb the b__________ it is.
podryga [215]

Answer:

Brighter

Explanation:

8 0
3 years ago
Read 2 more answers
Complete the equation to show the radioactive decay of carbon-14 to nitrogen-14
blsea [12.9K]

Answer:

The beta decay takes place.

Explanation:

The reaction of radioactivity of carbon 14 to nitrogen 14 is

There is a beta decay.  

The reaction is

C_{6}^{14}\rightarrow N_{7}^{14}+\beta _{-1}^{0}+ energy

Here some energy is released in form of neutrino.

7 0
3 years ago
If I travel 300 m east, then 400 m west, what is my distance &amp;<br> displacement?
ad-work [718]

Answer:100m west

Explanation:

6 0
3 years ago
One end of a 7-cm-long spring is attached to the ceiling. When a 5.4 kg mass is hung from the other end, the spring is stretched
mash [69]

Answer:

2.63 cm

Explanation:

Hooke's law gives that the force F is equal to cy where c is spring constant and x is extension

Making c the subject of the formula then

c=\frac {F}{y}

Since F is gm but taking the given mass to be F

c=\frac {5.4 kg}{4.3 cm}=1.2558139534883720930232558139534883720930

By substitution now considering F to be 3.3 kg

y=\frac {3.3 kg}{1.2558139534883720930232558139534883720930}=2.6277777777777 cm\approx 2.63 cm

8 0
3 years ago
Tim and Rick both can run at speed Vr and walk at speed Vw, with Vr &gt; Vw.
miss Akunina [59]

Answer:

Δt =  \frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw}

Explanation:

Hi there!

Using the equation of speed for the whole trip, we can obtain the time each one needed to cover the distance D.

The speed (v) is calculated by dividing the traveled distance (d) over the time needed to cover that distance (t):

v = d/t

Rick traveled half of the distance at Vr and the other half at Vw. Then, when v = Vr, the distance traveled was D/2 and the time is unknown, Δt1:

Vr = D/ (2 · Δt1)

For the other half of the trip the expression of velocity will be:

Vw = D/(2 · Δt2)

The total time traveled is the sum of both Δt:

Δt(total) = Δt1 + Δt2

Then, solving the first equation for Δt1:

Vr = D/ (2 · Δt1)

Δt1 = D/(2 · Vr)

In the same way for the second equation:

Δt2 = D/(2 · Vw)

Δt + Δt2 = D/(2 · Vr) + D/(2 · Vw)

Δt(total) = D/2 · (1/Vr + 1/Vw)

The time needed by Rick to complete the trip was:

Δt(total) = D/2 · (1/Vr + 1/Vw)

Now let´s calculate the time it took Tim to do the trip:

Tim walks half of the time, then his speed could be expressed as follows:

Vw = 2d1/Δt  Where d1 is the traveled distance.

Solving for d1:

Vw · Δt/2 = d1

He then ran half of the time:

Vr = 2d2/Δt

Solving for d2:

Vr · Δt/2 = d2

Since d1 + d2 = D, then:

Vw · Δt/2 +  Vr · Δt/2 = D

Solving for Δt:

Δt (Vw/2 + Vr/2) = D

Δt = D / (Vw/2 + Vr/2)

Δt = D/ ((Vw + Vr)/2)

Δt = 2D / (Vw + Vr)

The time needed by Tim to complete the trip was:

Δt = 2D / (Vw + Vr)

Let´s find the diference between the time done by Tim and the one done by Rick:

Δt(tim) - Δt(rick)

2D / (Vw + Vr) - (D/2 · (1/Vr + 1/Vw))

\frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw} = Δt

Let´s check the result. If Vr = Vw:

Δt = 2D/2Vr - D/2Vr - D/2Vr

Δt = D/Vr - D/Vr = 0

This makes sense because if both move with the same velocity all the time both will do the trip in the same time.

8 0
4 years ago
Other questions:
  • A spring is compressed by 0.02m. Calculate the energy stored in the spring if the force constant is 400Nm-1
    15·1 answer
  • Which of the following is an example of matter?
    14·2 answers
  • Davina accelerates a box across a smooth frictionless horizontal surface over a displacement of 18.0 m with a constant 25.0 N fo
    8·1 answer
  • Mary needs to row her boat across a 190 m -wide river that is flowing to the east at a speed of 1.3 m/s . mary can row with a sp
    15·1 answer
  • What is the mass of a crate if a force of 200 N causes it to accelerate at 8 m/s2? (Formula: F=ma)
    10·2 answers
  • Which electromagnetic wave has the lowest frequencies (less than 3..*.10 © hertz)?
    5·1 answer
  • Explain how fossil fuels are used to produce electricity?
    14·1 answer
  • WILL GIVE BRAINLIEST!
    13·1 answer
  • What is the momentum of a 5 kg object that has a velocity of 1.2 m/s? 3.8 kg • m/s 4.2 kg • m/s 6.0 kg • m/s 6.2 kg • m/s
    13·2 answers
  • Construct c = a + b by drawing and calculating the direction and magnitude of c. The direction should be
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!