Answer:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Explanation:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
The work done by the battery is equal to the charge transferred during the process times the potential difference between the two terminals of the battery:

where q is the charge and

is the potential difference.
In our problem, the work done is W=39 J while the potential difference of the battery is

, so we can find the charge transferred by the battery:
The answer to this question is <span>13,537</span>
Answer:
Acceleration will increase.
Explanation:
The relation between force, mass and acceleration according to the Newton's second law of motion is given as:
F = ma
We are given that the driving force on the truck remains constant, so F is constant here. We can rewrite the above equation as:

Since, F is constant, the acceleration of the truck is inversely proportional to the mass.
There is a hole at the bottom of the truck through which the sand is being lost at a constant rate. Since, the sand is being lost, the overall mass of the truck is being reduced.
Since, the acceleration of the truck is inversely proportional to the mass, the reduced mass will result in an increased acceleration.
So, the acceleration of the truck will increase.
Answer: 47.6 m/s
Explanation: Please see attached for the calculation and formula.