Answer:
The answer to the question is as follows
The acceleration due to gravity for low for orbit is 9.231 m/s²
Explanation:
The gravitational force is given as

Where
= Gravitational force
G = Gravitational constant = 6.67×10⁻¹¹
m₁ = mEarth = mass of Earth = 6×10²⁴ kg
m₂ = The other mass which is acted upon by
and = 1 kg
rEarth = The distance between the two masses = 6.40 x 10⁶ m
therefore at a height of 400 km above the erth we have
r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m
and
=
= 9.231 N
Therefore the acceleration due to gravity =
/mass
9.231/1 or 9.231 m/s²
Therefore the acceleration due to gravity at 400 kn above the Earth's surface is 9.231 m/s²
Answer:
Yes the student is correct
Explanation:
The first law of thermodynamics states that energy can neither be created nor destroyed
The second law of thermodynamics states that the entropy (disorderliness) of an isolated system always increases
Therefore, whereby energy is not supplied to maintain the orderly oscillatory motion with constant amplitude, the amplitude of the system is bound to reduce with time that is the vibration of the system must be damped
Answer:
For elliptical orbits: seldom
For circular orbits: always
Explanation:
We start by analzying a circular orbit.
For an object moving in circular orbit, the direction of the acceleration (centripetal acceleration) is always perpendicular to the direction of motion of the object.
Since acceleration has the same direction of the force (according to Newton's second law of motion), this means that the direction of the force (the centripetal force) is always perpendicular to the velocity of the object.
So for a circular orbit,
the direction of the velocity of the satellite is always perpendicular to the net force acting upon the satellite.
Now we analyze an elliptical orbit.
An elliptical orbit correponds to a circular orbit "stretched". This means that there are only 4 points along the orbit in which the acceleration (and therefore, the net force) is perpendicular to the direction of motion (and so, to the velocity) of the satellite. These points are the 4 points corresponding to the intersections between the axes of the ellipse and the orbit itself.
Therefore, for an elliptical orbit,
the direction of the velocity of the satellite is seldom perpendicular to the net force acting upon the satellite.
Answer:
d)2.13 C s⁻¹
Explanation:
Rate of flow of heat through walls
=
K = .33
A = 6 X .4 X .4 =0.96
T₂-T₁ = 30+40 = 70
d = 5 x 10⁻³
Put these data in the relation above
Rate of flow of heat
= 
= 4435.2 Js⁻¹
Specific heat of gas = 2.5 R = 20.785 J
Rise in temp = 
= 2.13 degree celsius.