Answer:
a) 46.5º b) 64.4º
Explanation:
To solve this problem we will use the laws of geometric optics
a) For this part we will use the law of reflection that states that the reflected and incident angle are equal
θ = 43.5º
This angle measured from the surface is
θ_r = 90 -43.5
θ_s = 46.5º
b) In this part the law of refraction must be used
n₁ sin θ₁ = n₂. Sin θ₂
sin θ₂ = n₁ / n₂ sin θ₁
The index of air refraction is n₁ = 1
The angle is this equation is measured between the vertical line called normal, if the angles are measured with respect to the surface
θ_s = 90 - θ
θ_s = 90- 43.5
θ_s = 46.5º
sin θ₂ = 1 / 1.68 sin 46.5
sin θ₂ = 0.4318
θ₂ = 25.6º
The angle with respect to the surface is
θ₂_s = 90 - 25.6
θ₂_s = 64.4º
measured in the fourth quadrant
Answer:
Force on the object is 20 N
Explanation:
As we know that work done to raise the book from initial position to final position is known as potential energy stored in it
So here we know that

here we know that
U = 30 J
s = displacement = 1.5 m
so we have


The formula for calculating <em>density </em>is P=M/V where P is the <em>density</em>, M is the <em>mass</em>, and V is the <em>volume</em>.
The problem gives you the <em>mass</em>, 30g, and the <em>volume</em>, 60cm^3;you can plug those into the equation, which should give you P=30/60.
Your answer should end up being P=0.5 g/cm^3.
WORK:
P=M/V
P=30g/60cm^3
P=0.5g/cm^3
SinA = 1000/2000 = 1/2
A = arsSin(1/2)
A = 30 degrees
No it will not because F will equal 3 not 0