Answer:
16.06 L was the initial volume of the balloon.
Explanation:
Initial moles of freon in ballon = 
Initial volume of freon gas in ballon = 
Moles of freon gas added in the balloon = n = 3.50 mole
Final moles of freon in ballon = 
Final volume of freon gas in ballon = 
Using Avogadro's law:
( at constant pressure and temperature)

16.06 L was the initial volume of the balloon.
1 has a higher ionization dismal aoa
Answer:
Photon of light
Explanation:
According to Bohr's model of the atom, electrons in atoms are found in specific energy levels. These energy levels are called stationary states, an electrons does not radiate energy when it occupies any of these stationary states.
However, an electron may absorb energy and move from one energy level or stationary state to another. The energy difference between the two energy levels must correspond to the energy of the photon of light absorbed in order to make the transition possible.
Since electrons are generally unstable in excited states, the electron quickly jumps back to ground states and emits the excess energy absorbed. The frequency or wavelength of the emitted photon can now be measured and used to characterize the transition. This is the principle behind many spectrometric and spectrophotometric methods.
Elements have neutral charges such as Na so if X has 72 protons + charges then it must also have 72 electrons with - charges
hope that helps
The easiest way is to use the Law of Gay-Lussac. This law states that there is a direct relation between the temperature in Kelvin of a gas and the pressure.
Then, namig p the pressure and T the temperature in Kelvin and using subscripts for every state:
p/T is constant ==> p_1 / T_1 = p_2/T_2
From which you obtain:
p_2 = [p_1 / T_1] * T_2
T_1 = 33.0 + 273.15 = 306.15 K
T _2 = 21.4 + 273.15 = 294.55 K
p_1 = 1014 kPa
p_2 = 1014 kPa * 294.55 K / 306.15 K = 975.6 kPa