Explanation:
The given data is as follows.
Heat transfer coefficient (h) = 12
Plate temperature (
) =
= 303 K
Steady state temperature (
) = ?
Hence, formula applied for steady state is as follows.
= 
Putting the given values into the above formula as follows.
= 
= ![5.67 \times 10^{-8} \times [(30 + 273)^{4} - T^{4}_{2}]](https://tex.z-dn.net/?f=5.67%20%5Ctimes%2010%5E%7B-8%7D%20%5Ctimes%20%5B%2830%20%2B%20273%29%5E%7B4%7D%20-%20T%5E%7B4%7D_%7B2%7D%5D)
= 282.66 K
= (282.66 -273)
= 9.66
Thus, we can conclude that the steady state temperature will be 9.66
.
Answer:
Dependent on the element that reacted with carbon
Explanation:
Nuclear fusion is the combination of small atomic nuclei into larger ones usually accompanied with the release of a large amount of energy.
From the problem stated, carbon fuses with another atom. The combined atom would have more nuclear particles in terms of protons and neutrons than the combining atoms. This will eventually make it weigh more than carbon and the atom it combines with. The resulting weight will depend on the combining atoms eventually.
The correct answer is option B.
The liquid or gas that carries the sample across the solid support is called mobile phase.
In chromatography, there are two phases: mobile phase and solid phase.
The mobile phase can be either in gas form or liquid form.
While performing the chromatography technique, mobile phase moves over the stationary phase and its components adsorb to the stationary phase and set apart from each other at different rates.
In general, mobile phase refers to the solvent phase that slides over the stationary phase through the chromatography paper.
on the other hand, stationary phase is motionless.
If you need to learn more about gas click here:
brainly.com/question/28010290
#SPJ4
The answer is the last one .... The ability to do work and cause change
Answer:
The
for the reaction
will be 4.69.
Explanation:
The given equation is A(B) = 2B(g)
to evaluate equilibrium constant for 
![K_c=[B]^2[A]](https://tex.z-dn.net/?f=K_c%3D%5BB%5D%5E2%5BA%5D)
= 0.045
The reverse will be 
Then, ![K_c = \frac{[A]}{[B]^2}](https://tex.z-dn.net/?f=K_c%20%3D%20%5Cfrac%7B%5BA%5D%7D%7B%5BB%5D%5E2%7D)
= 
= 
The equilibrium constant for
will be


= 4.69
Therefore,
for the reaction
will be 4.69.