Answer: The red blood cell will shrink due to water loss
Explanation:
Because 1% NaCl solution is slightly more concentrated than its isotonic 0.9% form, the red blood cell will lose its cell containing fluids such as water to the MORE concentrated environment.
This water loss after a prolonged period will result in shrinking of the red blood cell.
C. Tetraphosphorus trisulfide
The correct answer is:
_________________________________________________________
" F and Br , because they are in the same group" .
_________________________________________________________
Note:
_________________________________________________________
Choice [B]: "F and Br ; because they are in the same period" ; is incorrect; since "F" and "Br" are not in the same "period" (that is, "row").
______________________________________________________
Choice [C]: "Na and Mg; because they are in the same group {"column"} ; is incorrect; since: "Na" and "Mg are NOT in the same group {"column"].
_______________________________________________________
Choice [D]: "Na and Mg" ; because they are in the same period {"row"}; is incorrect. Note: "Na" and "Mg" are, in fact, in the same period {"row"}. However, as aforementioned, {Mg and Na} are not in the same group {"column".}.
Note: The similiarities in physical and chemistry properties among elements are determined and organized — or tend to be so—by "groups" {"columns"} — NOT by "periods" {rows}.
______________________________________________________
Answer:
<u><em>neurons</em></u>
Explanation:
The long-axoned cells, called principal neurons, transmit information over long distances from one brain region to another (Sheperd,1979). Principal neurons provide the pathways of communication within the nervous system.
Answer : The density of an object is, 
Solution : Given,
Mass of an object = 60 g
Volume of an object = 
Formula used :

Now put all the given values in this formula, we get the density of an object.

Therefore, the density of an object is, 