Answer
_2 HNO₃ + 1 Mg(OH)₂ → 1 Mg(NO₃)₂ + 2 H₂O
Explanation
Given:
______HNO3 + Mg(OH)2 ------>
Solution:
Note that the reaction between an acid and a base will give salt and water only.
Hence the complete reaction of the given equation is:
___HNO₃ + Mg(OH)₂ → Mg(NO₃)₂ + H₂O
To get the balanced equation for the acid-base reaction, 2 moles of HNO₃ will react with 1 mole of Mg(OH)₂ to produced 1 mole of Mg(NO₃)₂ and 2 moles of H₂O.
Therefore, the complete and balanced equation for the given acid-base reaction is:
_2 HNO₃ + 1 Mg(OH)₂ → 1 Mg(NO₃)₂ + 2 H₂O
Answer:
3.18 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 0.985 atm
- Initial volume (V₁): 3.65 L
- Final pressure (P₂): 861.0 mmHg
Step 2: Convert P₁ to mmHg
We will use the conversion factor 1 atm = 760 mmHg.
0.985 atm × 760 mmHg/1 atm = 749 mmHg
Step 3: Calculate the final volume of the gas
Assuming ideal behavior and constant temperature, we can calculate the final volume using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 749 mmHg × 3.65 L/861.0 mmHg = 3.18 L
Answer:
turgor pressure can be done in a lab or a self test.
turgor pressure is key to the plant’s vital processes. It makes the plant cell stiff and rigid. Without it, the plant cell becomes flaccid. Prolonged flaccidity could lead to the wilting of plants.
Turgor pressure is also important in stomate formation. The turgid guard cells create an opening for gas exchange. Carbon dioxide could enter and be used for photosynthesis. Other functions are apical growth, nastic movement, and seed dispersal.
Explanation:
- salt is bad for turgor pressure.
- Turgidity helps the plant to stay upright. If the cell loses turgor pressure, the cell becomes flaccid resulting in the wilting of the plant.
- The wilted plant on the left has lost its turgor as opposed to the plant on the right that has turgid cells.
V ( HCl ) = 45.00 mL in liters : 45.00 / 1000 => 0.045 L
M ( HCl ) = ?
V ( NaOH ) = 25.00 / 1000 => 0.025 L
M ( NaOH) = 0.2000 M
number of moles NaOH :
n = M x V = 0.2000 x 0.025 => 0.005 moles of NaOH
Mole ratio:
HCl + NaOH = NaCl + H2O
1 mole HCl ---------- 1 mole NaOH
? mole HCl ---------- 0.005 moles NaOH
moles HCl = 0.005 x 1 / 1
= 0.005 moles of HCl :
M ( HCl ) = n / V
M ( HCl ) = 0.005 / 0.045
= 0.1111 M
hope this helps!
Molarity (concentration) can be calculated by the equation:
Concentration = moles / volume in L = 0.54 mol / 0.6 L = 0.9 M
Hope this helps!