
- Given - <u>a </u><u>cone </u><u>with </u><u>base </u><u>radius </u><u>9</u><u>m</u><u>m</u><u> </u><u>and </u><u>height </u><u>1</u><u>3</u><u> </u><u>mm</u>
- To calculate - <u>volume </u><u>of </u><u>the </u><u>cone</u>
We know that ,

<u>su</u><u>b</u><u>stituting </u><u>the </u><u>values</u><u> </u><u>in </u><u>the </u><u>formula</u><u> </u><u>,</u>

hope helpful ~
Answer:
10
Step-by-step explanation:
For this you just have to plug 2 into a and 4 into b. You come to this expression:
3(2) + 4
This gives you 10
How do I need help like fr
Answer:
9·x² - 36·x = 4·y² + 24·y + 36 in standard form is;
(x - 2)²/2² - (y + 3)²/3² = 1
Step-by-step explanation:
The standard form of a hyperbola is given as follows;
(x - h)²/a² - (y - k)²/b² = 1 or (y - k)²/b² - (x - h)²/a² = 1
The given equation is presented as follows;
9·x² - 36·x = 4·y² + 24·y + 36
By completing the square, we get;
(3·x - 6)·(3·x - 6) - 36 = (2·y + 6)·(2·y + 6)
(3·x - 6)² - 36 = (2·y + 6)²
(3·x - 6)² - (2·y + 6)² = 36
(3·x - 6)²/36 - (2·y + 6)²/36 = 36/36 = 1
(3·x - 6)²/6² - (2·y + 6)²/6² = 1
3²·(x - 2)²/6² - 2²·(y + 3)²/6² = 1
(x - 2)²/2² - (y + 3)²/3² = 1
The equation of the hyperbola is (x - 2)²/2² - (y + 3)²/3² = 1.