Answer:


Stationary Points: See below.
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Calculus</u>
Derivative Notation dy/dx
Derivative of a Constant equals 0.
Stationary Points are where the derivative is equal to 0.
- 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
 - 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef
 
Basic Power Rule:
- f(x) = cxⁿ
 - f’(x) = c·nxⁿ⁻¹
 
Quotient Rule: ![\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>

<u>Step 2: Find 1st Derivative (dy/dx)</u>
- Quotient Rule [Basic Power]:                    

 - Simplify:                                                      

 - Basic Power Rule:                                     

 - Simplify:                                                     

 
<u>Step 3: 1st Derivative Test</u>
- Set 1st Derivative equal to 0:                    

 - Subtract 2 on both sides:                         

 - Multiply x² on both sides:                         

 - Divide -2 on both sides:                           

 - Square root both sides:                            

 
Our Critical Points (stationary points for rel max/min) are -2 and 2.
<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>
- Define:                                                      

 - Quotient Rule [Basic Power]:                  

 - Simplify:                                                    

 - Basic Power Rule:                                    

 
<u>Step 5: 2nd Derivative Test</u>
- Set 2nd Derivative equal to 0:                    

 - Solve for <em>x</em>:                                                    

 
Our Possible Point of Inflection (stationary points for concavity) is 0.
<u>Step 6: Find coordinates</u>
<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>
x = -2
- Substitute:                    

 - Divide/Multiply:            

 - Subtract:                       

 
x = 2
- Substitute:                    

 - Divide/Multiply:            

 - Add:                              

 
x = 0
- Substitute:                    

 - Evaluate:                      

 
<u>Step 7: Identify Behavior</u>
<em>See Attachment.</em>
Point (-2, -8) is a relative max because f'(x) changes signs from + to -.
Point (2, 8) is a relative min because f'(x) changes signs from - to +.
When x = 0, there is a concavity change because f"(x) changes signs from - to +.