1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
k0ka [10]
3 years ago
6

Can anybody help plzz?? 65 points

Mathematics
1 answer:
Yakvenalex [24]3 years ago
3 0

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

You might be interested in
What error might Anna have​ made? (Pls i have 10 min left i need this asap).
sveticcg [70]

Answer: A

Step-by-step explanation:

7 0
3 years ago
Is the answer one solution, infinite solutions or no solution?
nalin [4]

Answer:

infinite

Step-by-step explanation:

after distributing:

56x-40 = 56x-40

if both sides are equal then there are infinite values of 'x' that will make the equation true

5 0
3 years ago
Read 2 more answers
Which number is composite to 19, 61, 35, 59, 83
Sonbull [250]

The composite number is 83 branliest please.

7 0
3 years ago
Read 2 more answers
Find the measure of x 5.<br> *5 = [?]<br> 68 112°<br> 112\68
stellarik [79]
Angle 5 is 112 degrees
7 0
3 years ago
Read 2 more answers
What is the distance between points A and B:<br><br> A(2, -1) B(3, -2)
tresset_1 [31]

Answer:  \sqrt{2}

The Distance between two points in coordinate geometry can be measured by Distance formula.

Step-by-step explanation:

For two points A and B having coordinates A(x1,y1) and B(x2,y2), the distance can be measured by  D=  \sqrt{}(x2-x1)²+(y2-y1)²

So, the distance between the given two points can be measured

Distance = \sqrt{}(3-2)²+(-2-(-1))²

            = \sqrt{}1²+ (-1)²

            =\sqrt{}2

So, the distance between the two points is \sqrt{2}

5 0
3 years ago
Other questions:
  • Amelia wants to paint three walls in her family room. Two walls are 26 feet long by 9 ft wide. What is the total area of the wal
    10·1 answer
  • it costs a carpenter $120 to make a rocking chair if he sells each chair for $160 how many chairs must he sell to make a profit
    11·1 answer
  • Simplify the Expression I WILL GIVE BRAINLYIST!!!!!
    15·2 answers
  • What equals 12.5 in multiplication
    14·1 answer
  • Two positive integers are 3 units apart on a number line. Their product is 108. Which equation can be used to solve for m, the g
    12·2 answers
  • Week Height (inches) 0 3 1 4.4 2 6.2 3 7.3 4 9.1 The height of the plant, h, in inches, can be modeled by the function h(t) = 1.
    13·1 answer
  • The probability that is from the 60s is​
    12·1 answer
  • Which of the following summations represent the series shown? Check all that apply.
    11·2 answers
  • Please please help !!!!!!!!
    13·1 answer
  • What can you conclude about the population density from the table provided? Population Area (km²) Region A 20,178 521 Region B 1
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!