1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr402 [8]
3 years ago
11

Beth has $300 in her bank account. She buys x shirts for $20 each what is an inequality Beth can use to find how many shirts she

can buy and still have more than $100 in her account
Mathematics
1 answer:
Thepotemich [5.8K]3 years ago
7 0
It will have to be 10
You might be interested in
Which point-slope equation represents a line that passes through (3, –2) with a slope of negative StartFraction 4 Over 5 EndFrac
Schach [20]

Answer:

y + 2 = (-4/5)(x - 3)

Step-by-step explanation:

Your slope is -4/5.  Your line passes through (3, -2).

Applying the point slope formula, we get:

y + 2 = (-4/5)(x - 3)

5 0
3 years ago
Read 2 more answers
What is the slope G(8,1) & H(8,-6).
Gennadij [26K]
M=slope=(y2-y1)/(x2-x1)=(-6-1)/(8-8)=-7/0 which is technically undefined.  This is just a vertical line namely:

x=8  (you can think of a vertical line as having infinite slope)
6 0
2 years ago
If a student is 65.0 in tall, what is her height in m? (2.54 cm = 1 inch)
spayn [35]

Answer:

Height of the student=1.651m

Step-by-step explanation:

Given: Height of a student= 65.0 inch.

To find: Height of a student in meters.

Solution:

We know that 1 inch=2.54 cm, then

65.0 inch will be =2.54{\times}65.0

65.0 inch will be=165.2 cm

Also, we know that 1cm=\frac{1}{100} m, then

165.2 cm will be equal to=\frac{1}{100}{\times}165.1

165.2 cm will be equal to=1.651 meters

Therefore, the height of a student in meters will be 1.651 meters.

5 0
3 years ago
What is 1 2/5 × 2<br>what is 1/4 × 1​
Mrrafil [7]

Answer:

1).  2\frac{4}{5}

2).  \frac{1}{4}

Step-by-step explanation:

1). 1\frac{2}{5}*2

Convert mixed number to improper fraction: a\frac{b}{c} =\frac{a*c+b}{c}

1\frac{x2}{5} =\frac{1*5+2}{5} =\frac{7}{5}

\frac{7}{5} *2

\frac{7}{5} *2

Apply the fraction rule: \frac{a}{b}*c =\frac{a*c}{b}

\frac{7}{5} *2=\frac{7*2}{5}

=\frac{7*2}{5}

Multiply the numbers: 7*2=14

=\frac{14}{5}

Convert improper fractions to mixed numbers: \frac{14}{5}

\frac{14}{5}

Write the problem in long division format:

\begin{matrix}5\overline{|\smallspace14}\space\space\space\space\space\space\space\space\space\space\space\space\end{matrix}

Divide 14 by 5 to get 2

\begin{matrix}\space\space\space\space\space\space\emptyspace2\space\space\space\space\space\space\space\space\space\space\space\space\\ 5\overline{|\smallspace14}\space\space\space\space\space\space\space\space\space\space\space\space\end{matrix}

Multiply the quotient digit (2) by the divisor 5

\begin{matrix}\space\space\space\space\space\space\emptyspace2\space\space\space\space\space\space\space\space\space\space\space\space\\ 5\overline{|\smallspace14}\space\space\space\space\space\space\space\space\space\space\space\space\\ \space\space\space\space\underline{\emptyspace1\emptyspace0}\space\space\space\space\space\space\space\space\space\space\space\space\end{matrix}

Subtract 10 from 14

\begin{matrix}\space\space\space\space\space\space\emptyspace2\space\space\space\space\space\space\space\space\space\space\space\space\\ 5\overline{|\smallspace14}\space\space\space\space\space\space\space\space\space\space\space\space\\ \space\space\space\space\underline{\emptyspace1\emptyspace0}\space\space\space\space\space\space\space\space\space\space\space\space\\ \space\space\space\space\space\space\emptyspace4\space\space\space\space\space\space\space\space\space\space\space\space\end{matrix}

The solution for long division of \frac{14}{5} is 2 with a remainder of 4

2\quad \mathrm{Remainder}\quad \:4

Convert to mixed number: Quotient\frac{Remainder}{Divisor}

\frac{14}{5} =2\frac{4}{5}

=2\frac{4}{5}

2\frac{4}{5}

Convert \frac{4}{5} to decimal using long division

\frac{4}{5}

Divide 4 by 5 to get 0

\begin{matrix}\space\space\space\space\emptyspace0\space\space\space\space\space\space\space\space\space\space\space\space\\ 5\overline{|\smallspace4}\space\space\space\space\space\space\space\space\space\space\space\space\end{matrix}

Multiply the quotient digit (0) by the divisor 5

\begin{matrix}\space\space\space\space\emptyspace0\space\space\space\space\space\space\space\space\space\space\space\space\\ 5\overline{|\smallspace4}\space\space\space\space\space\space\space\space\space\space\space\space\\ \space\space\space\space\underline{\emptyspace0}\space\space\space\space\space\space\space\space\space\space\space\space\end{matrix}

Subtract 0 from 4

\begin{matrix}\space\space\space\space\emptyspace0\space\space\space\space\space\space\space\space\space\space\space\space\\ 5\overline{|\smallspace4}\space\space\space\space\space\space\space\space\space\space\space\space\\ \space\space\space\space\underline{\emptyspace0}\space\space\space\space\space\space\space\space\space\space\space\space\\ \space\space\space\space\emptyspace4\space\space\space\space\space\space\space\space\space\space\space\space\end{matrix}

Add a decimal place and a zero to the dividend

Bring down the zero from the dividend

\begin{matrix}\space\space\space\space\emptyspace0.\space\space\space\space\space\space\space\space\space\space\space\\ 5\overline{|\smallspace4.0}\space\space\space\space\space\space\space\space\space\\ \space\space\space\space\underline{\emptyspace0}\space\space\space\space\space\space\space\space\space\space\space\space\\ \space\space\space\space\emptyspace4\emptyspace0\space\space\space\space\space\space\space\space\space\space\end{matrix}

Divide 40 by 5 to get 8

\frac{40}{5} =8

The solution for long division of \frac{4}{5} is 0.8

=2+0.8

Add 2+0.8=2.8

2). \frac{1}{4} *1

Multiply \frac{1}{4} *1=\frac{1}{4}

=\frac{1}{4}

Anything multiplied by 1 is the same number.

Divide the the numbers \frac{1}{4} to get decimal form

Divide 1 by 4

\frac{1}{4} =0.25

=0.25

8 0
3 years ago
Read 2 more answers
Challenge The price of Stock A at 9 A.M. was $14.63. Since then, the price has been increasing at the
lozanna [386]

9514 1404 393

Answer:

  2.5 hours

Step-by-step explanation:

The price of stock A is described by ...

  A = 14.63 + 0.09t . . . . . . where t is time in hours after 9 A.M.

And the price of stock B is ...

  B = 15.13 - 0.11t

The two prices will be equal when ...

  A = B

  14.63 +0.09t = 15.13 -0.11t

  0.20t = 0.50 . . . . . . . . . . . . . add 0.11t -14.63 to both sides

  t = 0.50/0.20 = 2.5

The prices of the two stocks will be the same in about 2.5 hours.

8 0
2 years ago
Other questions:
  • The graph below shows a system of equations: Draw a line labeled y equals minus x plus 5 by joining the ordered pairs 0, 5 and 5
    12·1 answer
  • Nick and Matt want to compare the size of their square computer screens. The only information they know is that Nick's computer
    13·1 answer
  • What is the domain and range of y=x
    14·2 answers
  • A dairy wishes to mix together 1,000 pints of milk that contains 8% butterfat.If the mixture is to be made from milk containing
    6·1 answer
  • What is the multiplicative inverse of 1.5
    14·1 answer
  • Help with this problem
    6·1 answer
  • What is (-8) x (-2/3)
    6·1 answer
  • Round your answer to the nearest tenth if necessary. Use 3.14 for it.
    12·1 answer
  • Which transformation shows a reflection of ADEF? ​
    10·1 answer
  • Mm<br> E<br> 9. Solve: 3(x+4) ≤36<br> x&gt; 8<br> x≤8<br> x≤12<br> X&gt;12
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!