1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
damaskus [11]
3 years ago
9

A particle with a mass of 0.500 kg is attached to a horizontal spring with a force constant of 50.0 N/m. At the moment t = 0, th

e particle has its maximum speed of 20.0 m/s and is moving to the left. a) Determine the particle’s equation of motion, specifying its position as a function of time. b) Where in the motion is the potential energy three times the kinetic energy? c) Find the minimum time interval required for the particle to move from x = 0 to x = 1.00 m. d) Find the length of a simple pendulum with the same period.
Physics
1 answer:
svp [43]3 years ago
5 0

a) x(t)=2.0 sin (10 t) [m]

The equation which gives the position of a simple harmonic oscillator is:

x(t)= A sin (\omega t)

where

A is the amplitude

\omega=\sqrt{\frac{k}{m}} is the angular frequency, with k being the spring constant and m the mass

t is the time

Let's start by calculating the angular frequency:

\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{50.0 N/m}{0.500 kg}}=10 rad/s

The amplitude, A, can be found from the maximum velocity of the spring:

v_{max}=\omega A\\A=\frac{v_{max}}{\omega}=\frac{20.0 m/s}{10 rad/s}=2 m

So, the equation of motion is

x(t)= 2.0 sin (10 t) [m]

b)  t=0.10 s, t=0.52 s

The potential energy is given by:

U(x)=\frac{1}{2}kx^2

While the kinetic energy is given by:

K=\frac{1}{2}mv^2

The velocity as a function of time t is:

v(t)=v_{max} cos(\omega t)

The problem asks as the time t at which U=3K, so we have:

\frac{1}{2}kx^2 = \frac{3}{2}mv^2\\kx^2 = 3mv^2\\k (A sin (\omega t))^2 = 3m (\omega A cos(\omega t))^2\\(tan(\omega t))^2=\frac{3m\omega^2}{k}

However, \frac{m}{k}=\frac{1}{\omega^2}, so we have

(tan(\omega t))^2=\frac{3\omega^2}{\omega^2}=3\\tan(\omega t)=\pm \sqrt{3}\\

with two solutions:

\omega t= \frac{\pi}{3}\\t=\frac{\pi}{3\omega}=\frac{\pi}{3(10 rad/s)}=0.10 s

\omega t= \frac{5\pi}{3}\\t=\frac{5\pi}{3\omega}=\frac{5\pi}{3(10 rad/s)}=0.52 s

c) 3 seconds.

When x=0, the equation of motion is:

0=A sin (\omega t)

so, t=0.

When x=1.00 m, the equation of motion is:

1=A sin(\omega t)\\sin(\omega t)=\frac{1}{A}=\frac{1}{2}\\\omega t= 30\\t=\frac{30}{\omega}=\frac{30}{10 rad/s}=3 s

So, the time needed is 3 seconds.

d) 0.097 m

The period of the oscillator in this problem is:

T=\frac{2\pi}{\omega}=\frac{2\pi}{10 rad/s}=0.628 s

The period of a pendulum is:

T=2 \pi \sqrt{\frac{L}{g}}

where L is the length of the pendulum. By using T=0.628 s, we find

L=\frac{T^2g}{(2\pi)^2}=\frac{(0.628 s)^2(9.8 m/s^2)}{(2\pi)^2}=0.097 m






You might be interested in
The binding energies of K-shell and L-shell electrons in a certain metal are EK and EL, respectively, If a Kαx ray from this met
Svetach [21]

Answer:

The separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)

Explanation:

The relationship between energy and wavelength is expressed below:

E = hc/λ

λ = hc/EK - EL

Considering the condition of Bragg's law:

2dsinθ = mλ

For the first order Bragg's law of reflection:

2dsinθ = (1)λ

2dsinθ = hc/EK - EL

d = hc/2sinθ(EK - EL)

Where 'd' is the separation distance between the parallel planes of an atom, 'h' is the Planck's constant, 'c' is the velocity of light, θ is the angle of reflection, 'EK' is the energy of the K shell and 'EL' is the energy of the K shell.

Therefore, the separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)

5 0
3 years ago
How to find a scale for a graph
gtnhenbr [62]

Step 1: Identify the variables. ...Step 2: Determine the variable range. ...Step 3: Determine the scale of the graph. ...Step 4: Number and label each axis and title the graph.Step 5: Determine the data points and plot on the graph. ...Step 6: Draw the graph.
8 0
3 years ago
1. What is energy? What can an object with energy do?
kvv77 [185]

Answer:

Kinetic energy is the energy an object has because of its motion. If we want to accelerate an object, then we must apply a force. Applying a force requires us to do work. After work has been done, energy has been transferred to the object, and the object will be moving with a new constant speed.

3 0
2 years ago
A source emits sound uniformly in all directions. There are no reflections of the sound. At a distance of 12 m from the source,
yaroslaw [1]

Answer:

1.58 W

Explanation:

Since the sound spreads uniformly in all directions, it must be in a form of a circle with radius of 12 m. So the area of the circle is

A = \pi r^2 = \pi 12^2 = 452.389 m^2

From the intensity of the sound we can calculate the power at 12 m

P = AI = 452.389 * 3.5\times10^{-3} = 1.58 W

7 0
3 years ago
Consider one such cell where the magnitude of the potential difference is 65 mV, and the inner surface of the membrane is at a h
Gelneren [198K]

Answer: W = 1.04.10^{-20} J

Explanation: Since the potassium ion is at the outside membrane of a cell and the potential here is lower than the potential inside the cell, the transport will need work to happen.

The work to transport an ion from a lower potential side to a higher potential side is calculated by

W=q.\Delta V

q is charge;

ΔV is the potential difference;

Potassium ion has +1 charge, which means:

p = 1.6.10^{-19} C

To determine work in joules, potential has to be in Volts, so:

\Delta V=65.10^{-3}V

Then, work is

W=1.6.10^{-19}.65.10^{-3}

W=1.04.10^{-20}

To move a potassium ion from the exterior to the interior of the cell, it is required W=1.04.10^{-20}J of energy.

8 0
3 years ago
Other questions:
  • How many grams does 15.58 L of gasoline weigh? Gasoline has a density of 0.74 g/mL
    11·1 answer
  • The near point (smallest distance at which an object can be seen clearly) and the far point (the largest distance at which an ob
    6·1 answer
  • How to find answers to webassign questions online
    6·1 answer
  • A student throws a water balloon vertically downward from the top of a building. The balloon leaves the thrower's hand with a sp
    9·1 answer
  • a 2.00 kg friction-less block is attached to an ideal spring with force constant 315 N/m.Initially, the spring is neither stretc
    11·1 answer
  • You want to use a rope to pull a 10-kg box of books up a plane inclined 30∘ above the horizontal. The coefficient of kinetic fri
    7·1 answer
  • Importance of international bureau of weights and measures Inthe world​
    13·1 answer
  • PART A) The acceleration of gravity is 9.8 m/s^2 What is the magnitude of the net force on a(n) 82 kg driver operating a dragste
    10·1 answer
  • Pulmonary circulation involves blood flow to and from the heart and the ____?
    15·2 answers
  • a seismic wave has a measured wavelength of 0.50 km. its frequency is 27 hz. what is the velocity of the wave?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!