1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
damaskus [11]
3 years ago
9

A particle with a mass of 0.500 kg is attached to a horizontal spring with a force constant of 50.0 N/m. At the moment t = 0, th

e particle has its maximum speed of 20.0 m/s and is moving to the left. a) Determine the particle’s equation of motion, specifying its position as a function of time. b) Where in the motion is the potential energy three times the kinetic energy? c) Find the minimum time interval required for the particle to move from x = 0 to x = 1.00 m. d) Find the length of a simple pendulum with the same period.
Physics
1 answer:
svp [43]3 years ago
5 0

a) x(t)=2.0 sin (10 t) [m]

The equation which gives the position of a simple harmonic oscillator is:

x(t)= A sin (\omega t)

where

A is the amplitude

\omega=\sqrt{\frac{k}{m}} is the angular frequency, with k being the spring constant and m the mass

t is the time

Let's start by calculating the angular frequency:

\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{50.0 N/m}{0.500 kg}}=10 rad/s

The amplitude, A, can be found from the maximum velocity of the spring:

v_{max}=\omega A\\A=\frac{v_{max}}{\omega}=\frac{20.0 m/s}{10 rad/s}=2 m

So, the equation of motion is

x(t)= 2.0 sin (10 t) [m]

b)  t=0.10 s, t=0.52 s

The potential energy is given by:

U(x)=\frac{1}{2}kx^2

While the kinetic energy is given by:

K=\frac{1}{2}mv^2

The velocity as a function of time t is:

v(t)=v_{max} cos(\omega t)

The problem asks as the time t at which U=3K, so we have:

\frac{1}{2}kx^2 = \frac{3}{2}mv^2\\kx^2 = 3mv^2\\k (A sin (\omega t))^2 = 3m (\omega A cos(\omega t))^2\\(tan(\omega t))^2=\frac{3m\omega^2}{k}

However, \frac{m}{k}=\frac{1}{\omega^2}, so we have

(tan(\omega t))^2=\frac{3\omega^2}{\omega^2}=3\\tan(\omega t)=\pm \sqrt{3}\\

with two solutions:

\omega t= \frac{\pi}{3}\\t=\frac{\pi}{3\omega}=\frac{\pi}{3(10 rad/s)}=0.10 s

\omega t= \frac{5\pi}{3}\\t=\frac{5\pi}{3\omega}=\frac{5\pi}{3(10 rad/s)}=0.52 s

c) 3 seconds.

When x=0, the equation of motion is:

0=A sin (\omega t)

so, t=0.

When x=1.00 m, the equation of motion is:

1=A sin(\omega t)\\sin(\omega t)=\frac{1}{A}=\frac{1}{2}\\\omega t= 30\\t=\frac{30}{\omega}=\frac{30}{10 rad/s}=3 s

So, the time needed is 3 seconds.

d) 0.097 m

The period of the oscillator in this problem is:

T=\frac{2\pi}{\omega}=\frac{2\pi}{10 rad/s}=0.628 s

The period of a pendulum is:

T=2 \pi \sqrt{\frac{L}{g}}

where L is the length of the pendulum. By using T=0.628 s, we find

L=\frac{T^2g}{(2\pi)^2}=\frac{(0.628 s)^2(9.8 m/s^2)}{(2\pi)^2}=0.097 m






You might be interested in
You’ve made the finals of the science Olympics. As one of your tasks you’re given 1.0 g of copper and asked to make a cylindrica
Pani-rosa [81]

Answer:

Length = 2.92 m

Diameter = 0.11 mm

Explanation:

We have m = dl D \ \ \& \ \ \ R = \frac{\rho l}{A} , where:

l is the length

m = 1.0 g = 1 \times 10^{-3} \ kg\\R = 1.3 \ \Omega\\\rho = 1.7 \times 10^{-8} \Omega m\\d = 8.96 \ g/cm^3 = 8960 kg/m^3

We divide the first equation by the second equation to get:

\frac{m}{R} = \frac{d A^2}{\rho}

A^2 = \frac{m \rho}{dR} \\\\A^2 = \frac { 1 \times 10^{-3} \times 1.7 \times 10^{-8}}{8960 \times 1.3}\\\\A^2 = 1.5 \times 10^{-15}\\\\ A= 3.8 \times 10^{-8}   \ m^2

Using this Area, we find the diameter of the wire:

D = \sqrt{\frac{4A}{\pi}}

D = \sqrt{\frac{4 \times 3.8 \times 10^{-8} }{\pi}}

D = 0.00011 \ m = 1.1 \times 10^ {-4} = 0.11 \ mm

To find the length, we multiply the two equations stated initially:

mR = d\rho l^2\\\\l^2 = \frac{mR}{d\rho} \\\l^2 = \frac {1.0 \times 10^{-3} \times 1.3}{8960 \times 1.7\times 10^{-8}}

l^2 = 8.534\\l =   2.92 \ m

8 0
3 years ago
Read 2 more answers
Which atomic model proposed that electrons move in specific orbits around the nucleus of an atom
BabaBlast [244]
Bohr's atomic model
8 0
3 years ago
A block slides down a rough ramp with a 30-degree incline as shown.
In-s [12.5K]

Answer:

Image 4 ?

Explanation:

5 0
3 years ago
Which best describes the current atomic theory?
ivolga24 [154]
Choice-C is a correct statement.
6 0
2 years ago
Read 2 more answers
Which of the following would cause the greatest decrease in gravitational force between the earth and the moon?
Marat540 [252]

Answer:

A decrease in the distance between the earth and the moon.

7 0
2 years ago
Read 2 more answers
Other questions:
  • The name for metric unit of distance
    5·1 answer
  • A field measuring 12 meters by 16 meters is to have a brick paver walkway installed all around it, increasing the total area to
    10·1 answer
  • Which is a major threat to biodiversity? A. Red-billed oxpeckers eat ticks off of impalas' coats in the grasslands of East Afric
    14·1 answer
  • Barry is conducting an experiment and rolls a tennis ball down a ramp. Which best describes the motion of the tennis ball? It do
    9·2 answers
  • A weightlifter pulls on a 225 kg bar with 1600 N of force, but the bar does not move. How much work is performed?
    7·1 answer
  • In parallel circuits total resistance will be less than the resistance of the least resistence device. HOW ? please helppp
    12·1 answer
  • If the original pressure is 5 atm and original volume is 100 L, and the new volume is 20 L, what is the new pressure?
    12·1 answer
  • Velocity is a vectors quantity that has both magnitudes and directions. Using complete sentences, described the object's velocit
    9·1 answer
  • Which statement is correct about how the temperature of an object changes?
    13·1 answer
  • What horizontal velocity should be given to a ball hanging on a 4.9 m long thread so that it slides to the height of the hanger
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!