1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zheka24 [161]
3 years ago
15

Pulmonary circulation involves blood flow to and from the heart and the ____?

Physics
2 answers:
KonstantinChe [14]3 years ago
8 0

Answer: Lungs

Explanation:

olga nikolaevna [1]3 years ago
3 0
I believe the answer would be lungs
You might be interested in
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
What will happen two temperatures if you increase particle motion
nalin [4]

If the temperature is increased the particles gain more kinetic energy or vibrate faster. This means that they move faster and take more space.

8 0
3 years ago
As a mercury atom absorbs a photon of
Allisa [31]
The energy absorbed by photon is 1.24 eV.
This is the perfect answer.
8 0
3 years ago
What is used to create the sequential order of elements?
algol [13]
Atomic Number
or
Number of Protons

ΩΩΩΩΩΩΩΩΩΩ
5 0
3 years ago
Read 2 more answers
Reception devices pick up the variation in the electric field vector of the electromagnetic wave sent out by the satellite. Give
Keith_Richards [23]

Complete Question

A satellite in geostationary orbit is used to transmit data via electromagnetic radiation. The satellite is at a height of 35,000 km above the surface of the earth, and we assume it has an isotropic power output of 1 kW (although, in practice, satellite antennas transmit signals that are less powerful but more directional).

Reception devices pick up the variation in the electric field vector of the electromagnetic wave sent out by the satellite. Given the satellite specifications listed in the problem introduction, what is the amplitude E0 of the electric field vector of the satellite broadcast as measured at the surface of the earth? Use ϵ0=8.85×10^−12C/(V⋅m) for the permittivity of space and c=3.00×10^8m/s for the speed of light.

Answer:

The electric field vector of the satellite broadcast as measured at the surface of the earth is  E_o = 6.995 *10^{-6} \ V/m

Explanation:

From the question we are told that

     The height of the satellite is  r  = 35000 \ km  =  3.5*10^{7} \ m

      The power output of the satellite is P  = 1 \ KW  =  1000 \ W

       

Generally the intensity of the electromagnetic radiation of the satellite at the surface of the earth is  mathematically represented as  

     I  =  \frac{P}{4 \pi r^2}

substituting values

      I  =  \frac{1000}{4 * 3.142 (3.5*10^{7})^2}

      I  = 6.495*10^{-14} \  W/m^2

This intensity of the electromagnetic radiation of the satellite at the surface of the earth can also be   mathematically represented as  

          I  =  c * \epsilon_o * E_o^2

Where E_o is the amplitude of the electric field vector of the satellite broadcast so

         E_o =  \sqrt{\frac{2 * I}{c * \epsilon _o} }

substituting values

          E_o =  \sqrt{\frac{2 * 6.495 *10^{-14}}{3.0 *10^{8} * 8.85*10^{-12}} }

           E_o = 6.995 *10^{-6} \ V/m

 

   

4 0
3 years ago
Other questions:
  • How as bohr's atomic model similar to Rutherford's model
    7·2 answers
  • What is Metabolism?
    7·1 answer
  • Need help asap
    10·1 answer
  • A block of mass m = 0.13 kg is set against a spring with a spring constant of k1 = 623 N/m which has been compressed by a distan
    8·1 answer
  • Very large accelerations can injure the body, especially if they last for a considerable length of time. The severity index (SI)
    5·1 answer
  • Net force needed to accelerate a 1000-kg car at 0.5g
    7·1 answer
  • Which of the following is NOT a characteristic of an inner planet?. . A.. rocky. . B.. solid surface. . C.. near the sun. . D..
    15·2 answers
  • A gas has a volume of 1.5 L at 375 kPa.
    14·1 answer
  • Where was the position of the singularity before the big bang ?​
    13·1 answer
  • A hollow cylinder is given a velocity of 5.3 m/s and rolls up an incline to a height of 2.87 m. If a hollow sphere of the same m
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!