Answer:
Explanation:
When a body moves on a circular path , it undergoes a centripetal acceleration which is directed towards the centre . Whether the body moves clockwise or anticlockwise , the direction of centripetal acceleration will always oriented towards the centre.
The variation in tangential velocity will only change the magnitude of the acceleration but the direction of the centripetal acceleration will always be directed towards the centre.
So in the given case , change in the direction of rotation will not change the direction of centripetal acceleration. It will remain unchanged towards the centre.
overall change in direction of centripetal acceleration is zero.
The speed of the spaceship relative to the galaxy is 0.99999995c.
A light-year measures distance rather than time (as the name might imply). A light-year is a distance a light beam travels in one year on Earth, which is roughly 6 trillion miles (9.7 trillion kilometers). One light-year equals 5,878,625,370,000 miles. Light moves at a speed of 670,616,629 mph (1,079,252,849 km/h) in a vacuum.We multiply this speed by the number of hours in a year to calculate the distance of a light-year (8,766).
The Milky way galaxy is 100,000 light years in diameter.
The galaxy's diameter is a mere 1. 0 ly.
We know that ;

L = 1 light year
L₀ = 100,000 light year




Therefore, the speed of the spaceship relative to the galaxy is 0.99999995c.
Learn more about a light year here:
brainly.com/question/17423632
#SPJ4
Answer:
D) θ₂= 36. 6º
Explanation:
In this diffraction experiment it is described by the equation
sin θ = m λ
The first dark strip occurs for m = 1 and since the angle is generally small we can approximate sine to the value of the angle
θ₁ = λ/ a
This equation is valid for linear slits, in the case of a circular slit the problem must be solved in polar coordinates, so the equation changes slightly
θ₂ = 1.22 λ / a
In the proposed exercise we start with a linear slit of width a, where tes1 = 30º and end with a circular slit of the same diameter
θ₂ = 1.22 λ / a
Let's clear (Lam/a) of equalizing the two equations
θ₁ = θ₂/ 1.22
θ₂ = 1.22 θ₁
θ₂ = 1.22 30
θ₂= 36. 6º
When reviewing the correct results is D
Producers, consumers, and decomposers help to move matter and energy through ecosystems.
Hope this helps! :)