1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
2 years ago
9

3. A 40-gram ball of clay is dropped from a height, h, above a cup which is attached to a spring of spring force constant, k, of

25 N/m. The ball lands in the cup, and the spring compresses a distance, x. If x is 0.506 m, then what is the maximum speed of the ball?
Physics
1 answer:
zheka24 [161]2 years ago
4 0

Answer:

the maximum speed of the ball is 12.65 m/s

Explanation:

Given;

mass of the ball, m = 40 g = 0.04 kg

spring constant, k = 25 N/m

Apply the principle of conservation of energy;

The Elastic potential energy of the spring will be converted into Kinetic of the ball;

\frac{1}{2} kx^2 = \frac{1}{2} mv^2\\\\ kx^2 = mv^2\\\\v^2 = \frac{kx^2}{m} \\\\v = \sqrt{\frac{kx^2}{m}} \\\\v = \sqrt{\frac{(25)(0.506)^2}{0.04}} \\\\v = \sqrt{160.0225} \\\\v = 12.65 \ m/s

Therefore, the maximum speed of the ball is 12.65 m/s

You might be interested in
When you solve an equation the ___________ of ___________ must be treated like any other mathematical quantity— they must be mul
Aneli [31]

 when you solve an equation the quadratic of g(f) must be treated like any other mathematical quantity— they must be multiplied, divided, raised to powers, cancelled, etc in exactly the same way as the numbers to which they belong

                           

5 0
3 years ago
Force F acts between a pair of charges, q1 and q2, separated by a distance d. For each of the statements, use the drop-down menu
lora16 [44]

The initial force between the two charges is given by:

F=k \frac{q_1 q_2}{d^2}

where k is the Coulomb's constant, q1 and q2 the two charges, d their separation. Let's analyze now the other situations:

1. F

In this case, q1 is halved, q2 is doubled, but the distance between the charges remains d.

So, we have:

q_1' = \frac{q_1}{2}\\q_2' = 2 q_2\\d' = d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{(\frac{q_1}{2})(2q_2)}{d^2}=k \frac{q_1 q_2}{d^2}=F

So the force has not changed.

2. F/4

In this case, q1 and q2 are unchanged. The distance between the charges is doubled to 2d.

So, we have:

q_1' = q_1\\q_2' = q_2\\d' = 2d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{q_1 q_2)}{(2d)^2}=\frac{1}{4} k \frac{q_1 q_2}{d^2}=\frac{F}{4}

So the force has decreased by a factor 4.

3. 6F

In this case, q1 is doubled and q2 is tripled. The distance between the charges remains d.

So, we have:

q_1' = 2 q_1\\q_2' = 3 q_2\\d' = d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{(2 q_1)(3 q_2)}{d^2}=6 k \frac{q_1 q_2}{d^2}=6F

So the force has increased by a factor 6.

8 0
3 years ago
Read 2 more answers
Ultraviolet rays are used to _____.
NeTakaya

Answer:

Grow plants where little light is available

Explanation:

The plants need the ultraviolet rays in order to be able to survive and develop. The need mainly comes from the dependence of these rays for production of food, in a process known as photosynthesis. The plants are producers, thus they create their own food. In order to be able to do that they are using the ultraviolet rays, as well as water, and carbon dioxide. By combining them, the plants manage to create glucose for them, and that is their food source. The plants that are kept at places where there's not enough light are often exposed to ultraviolet rays so that they are able to perform the process of photosynthesis and grow properly.

8 0
3 years ago
Read 2 more answers
Q. A mass of 300g is lifted to a<br> height of 10m<br> 205 by a person. Calculate his work done
sergiy2304 [10]
A=mgh
m=300g=0.3kg
g=9,81 m/s^2
h=10m
A=29.43J
3 0
2 years ago
You are traveling in a car toward a hill at a speed of 36.4 mph. The car's horn emits sound waves of frequency 231 Hz, which mov
Marina CMI [18]

Answer:

<em>a. The frequency with which the waves strike the hill is 242.61 Hz</em>

<em>b. The frequency of the reflected sound wave is 254.23 Hz</em>

<em>c. The beat frequency produced by the direct and reflected sound is  </em>

<em>    11.62 Hz</em>

Explanation:

Part A

The car is the source of our sound, and the frequency of the sound wave it emits is given as 231 Hz. The speed of sound given can be used to determine the other frequencies, as expressed below;

f_{1} = f[\frac{v_{s} }{v_{s} -v} ] ..............................1

where f_{1} is the frequency of the wave as it strikes the hill;

f is the frequency of the produced by the horn of the car = 231 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 36.4 mph

Converting the speed of the car from mph to m/s we have ;

hint (1 mile = 1609 m, 1 hr = 3600 secs)

v = 36.4 mph *\frac{1609 m}{1 mile} *\frac{1 hr}{3600 secs}

v = 16.27 m/s

Substituting into equation 1 we have

f_{1} =  231 Hz (\frac{340 m/s}{340 m/s - 16.27 m/s})

f_{1}  = 242.61 Hz.

Therefore, the frequency which the wave strikes the hill is 242.61 Hz.

Part B

At this point, the hill is the stationary point while the driver is the observer moving towards the hill that is stationary. The frequency of the sound waves reflecting the driver can be obtained using equation 2;

f_{2} = f_{1} [\frac{v_{s}+v }{v_{s} } ]

where f_{2} is the frequency of the reflected sound;

f_{1}  is the frequency which the wave strikes the hill = 242.61 Hz;

v_{s} is the speed of sound = 340 m/s;

v is the speed of the car = 16.27 m/s.

Substituting our values into equation 1 we have;

f_{2} = 242.61 Hz [\frac{340 m/s+16.27 m/s }{340 m/s } ]

f_{2}  = 254.23 Hz.

Therefore, the frequency of the reflected sound is 254.23 Hz.

Part C

The beat frequency is the change in frequency between the frequency of the direct sound  and the reflected sound. This can be obtained as follows;

Δf = f_{2} -  f_{1}  

The parameters as specified in Part A and B;

Δf = 254.23 Hz - 242.61 Hz

Δf  = 11.62 Hz

Therefore the beat frequency produced by the direct and reflected sound is 11.62 Hz

3 0
3 years ago
Other questions:
  • What is NOT one of the three primary resources that families have to reach financial goals?
    15·1 answer
  • Refractive index measures the speed of light in a vacuum to its speed in
    11·1 answer
  • If you change the mass of a moving object, you change its _______.
    14·2 answers
  • Robby skateboards 0.50 blocks to his friend's house in 1.2 minutes. What is his speed?
    11·2 answers
  • A solid sphere has a temperature of 614 K. The sphere is melted down and recast into a cube that has the same emissivity and emi
    10·1 answer
  • What happens to your behind when you sit for too long?
    7·2 answers
  • What part of this transverse wave is the green arrow identifying?<br><br> Help plz
    8·1 answer
  • The water hyacinth was a major weed in Australian
    10·1 answer
  • A 4.50-kg centrifuge takes 200 s to spin up from rest to its final angular speed with constant angular acceleration. A point P l
    11·1 answer
  • An arrow is shot parallel to horizontal from a height of 1.4 meters. It has a velocity of 49 m/s.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!