Answer:
The resultant electric force is 14.8N to the right.
Explanation:
Since the three charges aren't in the same line, we have to break down the force in components. First, we need to know the distance from the third charge to the other ones. That is made using the Pythagorean Theorem. As the figure is symmetric with respect to the x-axis, the two distances are the same:

Now, we use the Coulomb's Law to obtain the magnitude of the individual forces caused by each charge on the third charge:

For the same reason the distances are the same, the magnitude of the forces are the same:

So, to get the resultant force, we have to break down this forces in components. To do this, we need their angles with respect to the x-axis. Let θ₁ and θ₂ be these angles, respectively. Then, we calculate them using trigonometry:

Now, we calculate the components of the forces:

Evidently, the y-components cancel out, and the resultant electric force on the third charge is
along the x-axis (to the right, because it's positive).
A ionosphere is a layer of the earths atmosphere that is ionized by solar and cosmic radiation <span />
Player A needs the least amount of energy. The ball is light weight and she is closest to the goal so the momentum need to kick the ball will be the least and the distance is has to travel is the shortest. But player C needs the most amount of energy. The ball is heavy so it will take the most momentum to move the ball and over such a long distance. Hope this help idrk.
Answer:
1.25L
Explanation:
Applying Gay-Lussac's Law which states that the pressure of a given mass of gas varies directly with the absolute temperature of the gas, when the volume is kept constant.

Hence the volume at 4.0atm is 1.25L