Answer:
The given statement is false.
Step-by-step explanation:
Given : For any function,
then 
To find : The above statement is true or false?
Solution :
In the above statement the condition
then
is valid for some function not for all.
Which means the statement is not true.
Taking a contrary example,
A trigonometric function
The function
is one-one and onto in the domain![[-\frac{\pi}{2},\frac{\pi}{2}]](https://tex.z-dn.net/?f=%5B-%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%5Cfrac%7B%5Cpi%7D%7B2%7D%5D)
Thus, its inverse exists in ![[-\frac{\pi}{2},\frac{\pi}{2}]](https://tex.z-dn.net/?f=%5B-%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%5Cfrac%7B%5Cpi%7D%7B2%7D%5D)
i.e., ![\text{In }[-\frac{\pi}{2},\frac{\pi}{2}],\ y=\sin x \Rightarrow\ x=\sin^{-1}(y).](https://tex.z-dn.net/?f=%5Ctext%7BIn%20%7D%5B-%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%5Cfrac%7B%5Cpi%7D%7B2%7D%5D%2C%5C%20y%3D%5Csin%20x%20%5CRightarrow%5C%20x%3D%5Csin%5E%7B-1%7D%28y%29.)
It depends on the domain for the given statement to be true.
Therefore, The given statement is false.