the function is to provide sealed combustion so that the loss of gas is minimized
Answer:
a) 28 stations
b) Rp = 21.43
E = 0.5
Explanation:
Given:
Average downtime per occurrence = 5.0 min
Probability that leads to downtime, d= 0.01
Total work time, Tc = 39.2 min
a) For the optimum number of stations on the line that will maximize production rate.
Maximizing Rp =minimizing Tp
Tp = Tc + Ftd
At minimum pt. = 0, we have:
dTp/dn = 0
Solving for n²:
The optimum number of stations on the line that will maximize production rate is 28 stations.
b)
Tp = 1.4 +1.4 = 2.8
The production rate, Rp =
The proportion uptime,
Answer:
Bore = 7 cm
stroke = 6.36 cm
compression ratio = 10.007
Explanation:
Given data:
Cubic capacity of the engine, V = 245 cc
Clearance volume, v = 27.2 cc
over square-ratio = 1.1
thus,
D/L = 1.1
where,
D is the bore
L is the stroke
Now,
V = ![\frac{\pi}{4}D^2L](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%7D%7B4%7DD%5E2L)
or
V = ![\frac{\pi}{4}\frac{D^3}{1.1}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%7D%7B4%7D%5Cfrac%7BD%5E3%7D%7B1.1%7D)
on substituting the values, we have
245 = ![\frac{\pi}{4}\frac{D^3}{1.1}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%7D%7B4%7D%5Cfrac%7BD%5E3%7D%7B1.1%7D)
or
D = 7.00 cm
Now,
we have
D/L = 1.1
thus,
L = D/1.1
L = 7/1.1
or
L= 6.36 cm
Now,
the compression ratio is given as:
![\textup{compression ratio}=\frac{V+v}{v}](https://tex.z-dn.net/?f=%5Ctextup%7Bcompression%20ratio%7D%3D%5Cfrac%7BV%2Bv%7D%7Bv%7D)
on substituting the values, we get
![\textup{compression ratio}=\frac{245+27.2}{27.2}](https://tex.z-dn.net/?f=%5Ctextup%7Bcompression%20ratio%7D%3D%5Cfrac%7B245%2B27.2%7D%7B27.2%7D)
or
Compression ratio = 10.007
Answer:
![\alpha = \sqrt{1.4 *0.287 \frac{KJ}{Kg K}*\frac{1000J}{1KJ} *400 K}= 400.899 m/s](https://tex.z-dn.net/?f=%20%5Calpha%20%3D%20%5Csqrt%7B1.4%20%2A0.287%20%5Cfrac%7BKJ%7D%7BKg%20K%7D%2A%5Cfrac%7B1000J%7D%7B1KJ%7D%20%2A400%20K%7D%3D%20400.899%20m%2Fs)
![Ma= \frac{310 m/s}{400.899 m/s}= 0.773](https://tex.z-dn.net/?f=%20Ma%3D%20%5Cfrac%7B310%20m%2Fs%7D%7B400.899%20m%2Fs%7D%3D%200.773)
Explanation:
For this case we have given the following data:
represent the temperature for the air
represent the velocity of the air
represent the specific heat ratio at the room
represent the gas constant for the air
And we want to find the velocity of the air under these conditions.
We can calculate the spped of the sound with the Newton-Laplace Equation given by this equation:
![\alpha = \sqrt{\frac{K}{\rho}}=\sqrt{k RT}](https://tex.z-dn.net/?f=%20%5Calpha%20%3D%20%5Csqrt%7B%5Cfrac%7BK%7D%7B%5Crho%7D%7D%3D%5Csqrt%7Bk%20RT%7D)
Where K = is the Bulk Modulus of air, k is the adiabatic index of air= 1.4, R = the gas constant for the air,
the density of the air and T the temperature in K
So on this case we can replace and we got:
![\alpha = \sqrt{1.4 *0.287 \frac{KJ}{Kg K}*\frac{1000J}{1KJ} *400 K}= 400.899 m/s](https://tex.z-dn.net/?f=%20%5Calpha%20%3D%20%5Csqrt%7B1.4%20%2A0.287%20%5Cfrac%7BKJ%7D%7BKg%20K%7D%2A%5Cfrac%7B1000J%7D%7B1KJ%7D%20%2A400%20K%7D%3D%20400.899%20m%2Fs)
The Mach number by definition is "a dimensionless quantity representing the ratio of flow velocity past a boundary to the local speed of sound" and is defined as:
![Ma=\frac{v}{\alpha}](https://tex.z-dn.net/?f=%20Ma%3D%5Cfrac%7Bv%7D%7B%5Calpha%7D)
Where v is the flow velocity and
the volocity of the sound in the medium and if we replace we got:
![Ma= \frac{310 m/s}{400.899 m/s}= 0.773](https://tex.z-dn.net/?f=%20Ma%3D%20%5Cfrac%7B310%20m%2Fs%7D%7B400.899%20m%2Fs%7D%3D%200.773)
And since the Ma<0.8 we can classify the regime as subsonic.
Answer:
t = 59.37 s
Explanation:
Given data:
thermal diffusivity ![= \alpha = \frac{k}{\rho c_p} =0.40\times 10^{-0.5}](https://tex.z-dn.net/?f=%3D%20%5Calpha%20%3D%20%5Cfrac%7Bk%7D%7B%5Crho%20c_p%7D%20%3D0.40%5Ctimes%2010%5E%7B-0.5%7D)
theraml conductivity = k = 22 W/m.K
h = 300 W/ m^2.K
= 25 degree C = 298 k
= 60 degree C = 333 k
= 75 degree C = 348 L
diameter d = 0.1 m
characteristics length Lc = r/3 = = 0.0166
![Bi = \frac{hLc}{K} = \frac{300\times 0.0166}{22} = 0.226](https://tex.z-dn.net/?f=Bi%20%3D%20%5Cfrac%7BhLc%7D%7BK%7D%20%3D%20%5Cfrac%7B300%5Ctimes%200.0166%7D%7B22%7D%20%3D%200.226)
![\tau = \frac{\alpha t}{lc^2} = \frac{0.4\times 10^{-5}\times t}{0.0166^2}](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%5Cfrac%7B%5Calpha%20t%7D%7Blc%5E2%7D%20%3D%20%5Cfrac%7B0.4%5Ctimes%2010%5E%7B-5%7D%5Ctimes%20t%7D%7B0.0166%5E2%7D)
![\tau = 0.036 t](https://tex.z-dn.net/?f=%5Ctau%20%3D%200.036%20t)
![\frac{T_o -T_{\infty}}{T_i -T_{\infty}} = Ae^[\lambda^2 \tau}](https://tex.z-dn.net/?f=%5Cfrac%7BT_o%20-T_%7B%5Cinfty%7D%7D%7BT_i%20-T_%7B%5Cinfty%7D%7D%20%3D%20Ae%5E%5B%5Clambda%5E2%20%5Ctau%7D)
at Bi = 0.226
Ai = 0.982
![\lambda = 0.876](https://tex.z-dn.net/?f=%5Clambda%20%3D%200.876)
![\frac{333348}{298-348} = 0.982e^{-0.879^2 0.036t}](https://tex.z-dn.net/?f=%5Cfrac%7B333348%7D%7B298-348%7D%20%3D%200.982e%5E%7B-0.879%5E2%200.036t%7D)
![0.3 = 0.982 e^{-0.2t}](https://tex.z-dn.net/?f=0.3%20%3D%200.982%20e%5E%7B-0.2t%7D)
![0.305 = e^{-0.2t}](https://tex.z-dn.net/?f=0.305%20%3D%20e%5E%7B-0.2t%7D)
-1.187 = - 0.02t
t = 59.37 s