Answer: That you are dressed appropriately, to speak in a formal manner, and to be confident in your answers.
Answer:
Explanation:
From the information given;
The velocity of the wind blow V = 7 m/s
The diameter of the blades (d) = 80 m
Percentage of the overall efficiency 
The density of air 
Then, we can use the concept of the kinetic energy of the wind blowing to estimate the mechanic energy of air per unit mass by using the formula:

here;
m = 
= 
= 43982.29 kg/s
∴




The actual electric power is:



Answer:
Electrical energy is energy derived as a result of movement of electrons. When used loosely, electrical energy refers to energy that has been converted from electric potential energy. ... Once converted from potential energy, electrical energy can always be called another type of energy (heat, light, motion, etc.)
Explanation:
<h2><em>hope</em><em> </em><em>it</em><em> </em><em>is</em><em> </em><em>helpful</em><em> </em><em>for</em><em> </em><em>you</em><em> </em></h2><h2><em>keep</em><em> </em><em>smiling</em><em> </em></h2>
Answer:
200
Explanation:
A size sheets (also known as letter size) are 8.5 inches by 11 inches.
B size sheets (also known as ledger size) are 11 inches by 17 inches.
One B size sheet is twice as large as a A size sheet. So if you have 100 B size sheets and cut each one in half, you'll get 200 A size sheets.
Answer:
Given that;
Jello there, see explanstion for step by step solving.
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.
Explanation:
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.
See attachment for more clearity