Answer:a
a) Vo/Vi = - 3.4
b) Vo/Vi = - 14.8
c) Vo/Vi = - 1000
Explanation:
a)
R1 = 17kΩ
for ideal op-amp
Va≈Vb=0 so Va=0
(Va - Vi)/5kΩ + (Va -Vo)/17kΩ = 0
sin we know Va≈Vb=0
so
-Vi/5kΩ + -Vo/17kΩ = 0
Vo/Vi = - 17k/5k
Vo/Vi = -3.4
║Vo/Vi ║ = 3.4 ( negative sign phase inversion)
b)
R2 = 74kΩ
for ideal op-amp
Va≈Vb=0 so Va=0
so
(Va-Vi)/5kΩ + (Va-Vo)74kΩ = 0
-Vi/5kΩ + -Vo/74kΩ = 0
Vo/Vi = - 74kΩ/5kΩ
Vo/Vi = - 14.8
║Vo/Vi ║ = 14.8 ( negative sign phase inversion)
c)
Also for ideal op-amp
Va≈Vb=0 so Va=0
Now for position 3 we apply nodal analysis we got at position 1
(Va - Vi)/5kΩ + (Va - Vo)/5000kΩ = 0 ( 5MΩ = 5000kΩ )
so
-Vi/5kΩ + -Vo/5000kΩ = 0
Vo/Vi = - 5000kΩ/5kΩ
Vo/Vi = - 1000
║Vo/Vi ║ = 1000 ( negative sign phase inversion)
The number of hectares of each crop he should plant are; 250 hectares of Corn, 500 hectares of Wheat and 450 hectares of soybeans
<h3>How to solve algebra word problem?</h3>
He grows corn, wheat and soya beans on the farm of 1200 hectares. Thus;
C + W + S = 12 ----(1)
It costs $45 per hectare to grow corn, $60 to grow wheat, and $50 to grow soybeans. Thus;
45C + 60W + 50S = 63750 -----(2)
He will grow twice as many hectares of wheat as corn. Thus;
W = 2C ------(3)
Put 2C for W in eq 1 and eq 2 to get;
C + 2C + S = 1200
3C + S = 1200 -----(4)
45C + 60(2C) + 50S = 63750
45C + 120C + 50S = 63750
165C + 50S = 63750 ------(5)
Solving eq 4 and 5 simultaneosly gives;
C = 250 and W = 500
Thus; S = 1200 - 3(250)
S = 450
Read more about algebra word problems at; brainly.com/question/13818690
Explanation:
sory sorry sorry sorrysorrysorry
Answer:
Final length= 746.175 mm
Explanation:
Given that Length of aluminium at 223 C is 750 mm.As we know that when temperature of material increases or decreases then dimensions of material also increases or decreases respectively with temperature.
Here temperature of aluminium decreases so the final length of aluminium decreases .
As we know that

Now by putting the values

ΔL=3.82 mm
So final length =750-3.82 mm
Final length= 746.175 mm
Answer:
Heat flux of CO₂ in cgs
= 170.86 x 10⁻⁹ mol / cm²s
SI units
170.86 x 10⁻⁸ kmol/m²s
Explanation: