Explanation:
Step1
In the stress-strain curve of any material, the yield stress is the maximum stress at which material starts yielding.
Step2
Young’s modulus is the constant of proportionality of stress and strain according to hooks law. It is the slope of the slope of the stress-strain curve of the any material under proportional limit.
Step3
Ultimate tensile stress is the maximum stress that induced in the material under application of load.
Step4
Toughness is the strain energy per unit volume up to the fracture point of the stress-strain diagram of any material. This is the area under the curve of stress-strain.
Step5
Point of necking is the point where any material starts necking under application of load in necking region of the stress-strain curve.
Step6
Fracture point is the last point of the stress-strain curve where component fractures under application of load.
All the parameters are shown in below stress-strain curve:
Answer:
It should be in Park or Neutral.
Explanation:
Answer:
A. National Highway Safety Act
Explanation:
The National Highway Safety Act establishes general guidelines concerning licensing, vehicle registration and inspection, and traffic laws for state regulations. The act was made in 1966 to reduce the amount of death on the highway as a result of increase in deaths by 30% between 1960 and 1965
National Traffic and Motor Vehicle Safety Act regulates vehicle manufacturers by ensuring national safety standards and issuance recalls for defective vehicles
Uniform Traffic Control Devices Act defines shapes, colors and locations for road signs, traffic signals, and road markings
Answer:
a. V = 109.64 × 10⁵ ft/min
b. Mw = 654519.54 kg/hr
Explanation:
Given Parameters
mass flow rate of water, Mw = 90000g/min = 6607.33 kg/s
inlet temperature of water, T1 = 84 F = 28.89 C
outlet temperature of water, T2 = 68 F = 20 C
specific heat capacity of water, c = 4.18kJ/kgK
rate of heat remover from water, Qw is given by
Qw = 6607.33[28.89 - 20] * 4.18
Qw = 245529.545kw
For air, inlet condition
DBT = 70 F hi = 43.43 kJ/kg
WBT = 60 F wi = 0.00874 kJ/kg
u1 = 0.8445 m/kg
oulet condition,
DBT = 70 F RH = 100.1
h1 = 83.504kJ/kg
Wo = 0.222kJ/kg
check the attached file for complete solution
To put out a class D metal fire, you must smother the fire and eliminate the oxygen element in the fire.
<h3>What is a Class D fire?</h3>
A class D fire is a type of fire that cannot be extinguished by water. This is because adding water to it reacts with other elements in the fire intensifying the fire even more.
Smothering in this context involves adding a solution like carbon dioxide (CO2) into the fire, this results in a reduction of oxygen in the atmosphere surrounding the class D fire.
By so doing, smothering the fire eliminates the oxygen element in the fire, thereby extinguishing the fire.
You can learn more about extinguishing fires here https://brainly.in/question/760550
#SPJ1