Answer:
Circular tube
Explanation:
Now for better understanding lets take an example
Lets take
Diameter of solid bar=
cm
Outer diameter of tube =6 cm
Inner diameter of tube=2 cm
So from we can say that both tubes have equal cross sectional area.
We know that buckling load is given as
If area moment of inertia(I) is high then buckling load will be high.
We know that area moment of inertia(I)
For circular tube 
For circular bar
Now by putting the values
For circular tube 
For circular bar 
So we can say that for same cross sectional area the area moment of inertia(I) is high for tube as compare to bar.So buckling load will be higher in tube as compare to bar.
Explanation:
Joey has a car that uses the hand crank to open the windows. Joey is wondering where the energy comes from to open the windows.The sunHuman-powered energy from JoeyThe hand crankThe moving car
Okay sure.
I’ll 1)chords
2)pulse
3)aerophone
4) the answer is C
5)rhythm
Pretty sure those are the answers
Answer:
The correct answer is option 'B': Load is far from fulcrum and the effort is applied near the fulcrum
Explanation:
A lever works on the principle of balancing of torques. The torque about the fulcrum by the load should be equal to the torque by the applied effort. Since we know that the torque is proportional to both the force and the distance it is applied from the distance from the axis of rotation. A lever is used when we need to lift a heavy load by utilizing this effect of the lever arm.
A mechanical disadvantage occurs when we are not able to lift the weight easily due to the fact we apply effort near the fulcrum.
Answer:
Explanation:
Run the code given in text file following instructions.