<span>(y^5)^2 = y^10
This is power of a power property</span>
Answer:
C. (3x)^2 - (2)^2
Step-by-step explanation:
Each of the two terms is a perfect square, so the factorization is that of the difference of squares. Rewriting the expression to ...
(3x)^2 - (2)^2
highlights the squares being differenced.
__
We know the factoring of the difference of squares is ...
a^2 -b^2 = (a -b)(a +b)
so the above-suggested rewrite is useful for identifying 'a' and 'b'.
<span>An equiangular triangle is a triangle where all three interior angles are equal in measure.</span>
Answer:
Therefore, the probability that at least half of them need to wait more than 10 minutes is <em>0.0031</em>.
Step-by-step explanation:
The formula for the probability of an exponential distribution is:
P(x < b) = 1 - e^(b/3)
Using the complement rule, we can determine the probability of a customer having to wait more than 10 minutes, by:
p = P(x > 10)
= 1 - P(x < 10)
= 1 - (1 - e^(-10/10) )
= e⁻¹
= 0.3679
The z-score is the difference in sample size and the population mean, divided by the standard deviation:
z = (p' - p) / √[p(1 - p) / n]
= (0.5 - 0.3679) / √[0.3679(1 - 0.3679) / 100)]
= 2.7393
Therefore, using the probability table, you find that the corresponding probability is:
P(p' ≥ 0.5) = P(z > 2.7393)
<em>P(p' ≥ 0.5) = 0.0031</em>
<em></em>
Therefore, the probability that at least half of them need to wait more than 10 minutes is <em>0.0031</em>.
I did the math but I got -4 so maybe -14