Answer:
lkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Step-by-step explanation:
Answer:
\left(3+i\right)y\left(3-i\right)=10y
Step-by-step explanation:
\left(3+i\right)y\left(3-i\right)
\left(3+i\right)\left(3-i\right)y
=y\cdot \:10
=10y
Answer:
The line equation in slope-intercept form is:
Hence, option D is true.
Step-by-step explanation:
Given the points
Finding the slope between the points
As the y-intercept is obtained by setting the value x = 0.
As we know that when x = 0, the vale of y-intercept y = 4
so the y-intercept is b = 4.
As the slope-intercept form is
substituting the slope m = -2/5 and the y-intercept b=4
Therefore, the line equation in slope-intercept form is:
Hence, option D is true.
There is a multiple zero at 0 (which means that it touches there), and there are single zeros at -2 and 2 (which means that they cross). There is also 2 imaginary zeros at i and -i.
You can find this by factoring. Start by pulling out the greatest common factor, which in this case is -x^2.
-x^6 + 3x^4 + 4x^2
-x^2(x^4 - 3x^2 - 4)
Now we can factor the inside of the parenthesis. You do this by finding factors of the last number that add up to the middle number.
-x^2(x^4 - 3x^2 - 4)
-x^2(x^2 - 4)(x^2 + 1)
Now we can use the factors of two perfect squares rule to factor the middle parenthesis.
-x^2(x^2 - 4)(x^2 + 1)
-x^2(x - 2)(x + 2)(x^2 + 1)
We would also want to split the term in the front.
-x^2(x - 2)(x + 2)(x^2 + 1)
(x)(-x)(x - 2)(x + 2)(x^2 + 1)
Now we would set each portion equal to 0 and solve.
First root
x = 0 ---> no work needed
Second root
-x = 0 ---> divide by -1
x = 0
Third root
x - 2 = 0
x = 2
Forth root
x + 2 = 0
x = -2
Fifth and Sixth roots
x^2 + 1 = 0
x^2 = -1
x = +/-
x = +/- i
Answer:
B (4,2)
Step-by-step explanation:
This coordinate pair would make the relation not a function because there would be two X values that are the same.