1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
3 years ago
15

How do you add matrixs

Mathematics
1 answer:
NikAS [45]3 years ago
5 0
Add number in the same position together
matrix C = A + B
member Cij = Aij + Bij
C23 = A23 + B23
A,B,C have the same dimension
You might be interested in
Can someone help me please
Murljashka [212]

Answer: 0

Step-by-step explanation: ur welcome ;)

5 0
3 years ago
Read 2 more answers
Use the distributive property to solve the equation 28 - (3x + 4) = 2(x + 6) + 5
Shalnov [3]
1.) 28-3x-4= 2x+12+x
2.) 24-3x= 3x+12
3.)24-6x=12
4.)-6x=-12
5.)x=2
7 0
3 years ago
Help pleaseeeeeeeeeeeeeeeeeeeeeeeeeeeeee
koban [17]

Answer:

the last one :)

Step-by-step explanation:

5 0
3 years ago
The line with the slope of -8 passing through (-11,7)
Dahasolnce [82]
Slope intercept form y = -8x - 81
Point slope form (y - 7) = -8 (x + 11)
5 0
4 years ago
Rationalise the denominator of:<br>1/(√3 + √5 - √2)​
Paul [167]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} }

can be re-arranged as

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}   -   \sqrt{2}   +  \sqrt{5} }

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }  \times \dfrac{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }

We know,

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ {( \sqrt{3}  -  \sqrt{2} )}^{2}  -  {( \sqrt{5}) }^{2} }

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{3 + 2 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{5 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{ - ( -  \sqrt{3} +  \sqrt{2}  + \sqrt{5}) }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}  \times \dfrac{ \sqrt{6} }{ \sqrt{6} }

\rm \:  =  \: \dfrac{-  \sqrt{18} +  \sqrt{12}  + \sqrt{30}}{2  \times 6}

\rm \:  =  \: \dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}

\rm \:  =  \: \dfrac{-  3\sqrt{2} + 2 \sqrt{3}   + \sqrt{30}}{12}

Hence,

\boxed{\tt{ \rm \dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} } =\dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>More Identities to </u><u>know:</u></h3>

\purple{\boxed{\tt{  {(x  -  y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{3} =  {x}^{3} + 3xy(x + y) +  {y}^{3}}}}

\purple{\boxed{\tt{  {(x - y)}^{3} =  {x}^{3} - 3xy(x  -  y) -  {y}^{3}}}}

\pink{\boxed{\tt{  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}}

\pink{\boxed{\tt{  {(x + y)}^{2}  -  {(x - y)}^{2} = 4xy}}}

6 0
3 years ago
Other questions:
  • Simplify this algebraic equation, Please show your work.<br> 55-6(3b-1)=-11
    10·2 answers
  • After a power failure, the temperature in a freezer increased at an average rate of 2.5 °F per hour. The total increase was 7.5
    6·1 answer
  • Simplify Negative three and one-half minus negative twelve and one-fourth.
    9·2 answers
  • Score: 0 of 1 pt
    14·1 answer
  • Please answer this correctly
    15·1 answer
  • How do I work out this question?
    6·1 answer
  • Length of the missing leg is:
    7·1 answer
  • write an equation for direct variation and identify the constant of variation when y varies directly as x. if x=5 when y=12
    5·1 answer
  • A cookie recipe uses V2 teaspoon of vanilla with 3/4 cups of flour. How
    10·1 answer
  • 3 ( x - 1/4 ) = 13/6
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!